Cálculo Exemplos

Avalie a Integral integral de 1 a 6 de 9/x-e^(-x) com relação a x
Etapa 1
Divida a integral única em várias integrais.
Etapa 2
Como é constante com relação a , mova para fora da integral.
Etapa 3
A integral de com relação a é .
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 5.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 5.1.1
Diferencie .
Etapa 5.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.4
Multiplique por .
Etapa 5.2
Substitua o limite inferior por em .
Etapa 5.3
Multiplique por .
Etapa 5.4
Substitua o limite superior por em .
Etapa 5.5
Multiplique por .
Etapa 5.6
Os valores encontrados para e serão usados para avaliar a integral definida.
Etapa 5.7
Reescreva o problema usando , e os novos limites de integração.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Simplifique.
Toque para ver mais passagens...
Etapa 7.1
Multiplique por .
Etapa 7.2
Multiplique por .
Etapa 8
A integral de com relação a é .
Etapa 9
Substitua e simplifique.
Toque para ver mais passagens...
Etapa 9.1
Avalie em e em .
Etapa 9.2
Avalie em e em .
Etapa 9.3
Remova os parênteses desnecessários.
Etapa 10
Use a propriedade dos logaritmos do quociente, .
Etapa 11
Simplifique.
Toque para ver mais passagens...
Etapa 11.1
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 11.2
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 11.3
Divida por .
Etapa 11.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 12
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal:
Etapa 13