Insira um problema...
Cálculo Exemplos
Etapa 1
Subtraia de .
Etapa 2
Etapa 2.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 2.1.1
Fatore de .
Etapa 2.1.1.1
Fatore de .
Etapa 2.1.1.2
Fatore de .
Etapa 2.1.1.3
Fatore de .
Etapa 2.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 2.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 2.1.4
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 2.1.5
Cancele o fator comum de .
Etapa 2.1.5.1
Cancele o fator comum.
Etapa 2.1.5.2
Divida por .
Etapa 2.1.6
Aplique a propriedade distributiva.
Etapa 2.1.7
Multiplique por .
Etapa 2.1.8
Simplifique cada termo.
Etapa 2.1.8.1
Cancele o fator comum de .
Etapa 2.1.8.1.1
Cancele o fator comum.
Etapa 2.1.8.1.2
Divida por .
Etapa 2.1.8.2
Cancele o fator comum de e .
Etapa 2.1.8.2.1
Fatore de .
Etapa 2.1.8.2.2
Cancele os fatores comuns.
Etapa 2.1.8.2.2.1
Multiplique por .
Etapa 2.1.8.2.2.2
Cancele o fator comum.
Etapa 2.1.8.2.2.3
Reescreva a expressão.
Etapa 2.1.8.2.2.4
Divida por .
Etapa 2.1.8.3
Aplique a propriedade distributiva.
Etapa 2.1.8.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.1.8.5
Multiplique por .
Etapa 2.1.9
Simplifique a expressão.
Etapa 2.1.9.1
Mova .
Etapa 2.1.9.2
Reordene e .
Etapa 2.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 2.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 2.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 2.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 2.3
Resolva o sistema de equações.
Etapa 2.3.1
Resolva em .
Etapa 2.3.1.1
Reescreva a equação como .
Etapa 2.3.1.2
Divida cada termo em por e simplifique.
Etapa 2.3.1.2.1
Divida cada termo em por .
Etapa 2.3.1.2.2
Simplifique o lado esquerdo.
Etapa 2.3.1.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.3.1.2.2.2
Divida por .
Etapa 2.3.1.2.3
Simplifique o lado direito.
Etapa 2.3.1.2.3.1
Divida por .
Etapa 2.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 2.3.2.1
Substitua todas as ocorrências de em por .
Etapa 2.3.2.2
Simplifique o lado esquerdo.
Etapa 2.3.2.2.1
Remova os parênteses.
Etapa 2.3.3
Resolva em .
Etapa 2.3.3.1
Reescreva a equação como .
Etapa 2.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 2.3.3.2.1
Some aos dois lados da equação.
Etapa 2.3.3.2.2
Some e .
Etapa 2.3.4
Resolva o sistema de equações.
Etapa 2.3.5
Liste todas as soluções.
Etapa 2.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 2.5
Simplifique.
Etapa 2.5.1
Divida por .
Etapa 2.5.2
Mova o número negativo para a frente da fração.
Etapa 2.5.3
Fatore de .
Etapa 2.5.4
Reescreva como .
Etapa 2.5.5
Fatore de .
Etapa 2.5.6
Simplifique a expressão.
Etapa 2.5.6.1
Reescreva como .
Etapa 2.5.6.2
Mova o número negativo para a frente da fração.
Etapa 2.5.6.3
Multiplique por .
Etapa 2.5.6.4
Multiplique por .
Etapa 2.5.7
Remova o zero da expressão.
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Etapa 4.1
Deixe . Encontre .
Etapa 4.1.1
Diferencie .
Etapa 4.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.5
Some e .
Etapa 4.2
Reescreva o problema usando e .
Etapa 5
A integral de com relação a é .
Etapa 6
Simplifique.
Etapa 7
Substitua todas as ocorrências de por .