Cálculo Exemplos

Avalie a Integral integral de (2x^2-9x-35)/((x+1)(x+2)(x+3)) com relação a x
Etapa 1
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 1.1.1
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 1.1.1.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 1.1.1.1.1
Fatore de .
Etapa 1.1.1.1.2
Reescreva como mais
Etapa 1.1.1.1.3
Aplique a propriedade distributiva.
Etapa 1.1.1.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 1.1.1.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 1.1.1.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.4
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.5
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.6
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.6.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.1.1
Cancele o fator comum.
Etapa 1.1.6.1.2
Reescreva a expressão.
Etapa 1.1.6.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.2.1
Cancele o fator comum.
Etapa 1.1.6.2.2
Reescreva a expressão.
Etapa 1.1.6.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.3.1
Cancele o fator comum.
Etapa 1.1.6.3.2
Divida por .
Etapa 1.1.7
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.7.1
Aplique a propriedade distributiva.
Etapa 1.1.7.2
Aplique a propriedade distributiva.
Etapa 1.1.7.3
Aplique a propriedade distributiva.
Etapa 1.1.8
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.8.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.8.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.8.1.1.1
Mova .
Etapa 1.1.8.1.1.2
Multiplique por .
Etapa 1.1.8.1.2
Multiplique por .
Etapa 1.1.8.1.3
Multiplique por .
Etapa 1.1.8.2
Some e .
Etapa 1.1.9
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.9.1.1
Cancele o fator comum.
Etapa 1.1.9.1.2
Divida por .
Etapa 1.1.9.2
Aplique a propriedade distributiva.
Etapa 1.1.9.3
Mova para a esquerda de .
Etapa 1.1.9.4
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.4.1
Aplique a propriedade distributiva.
Etapa 1.1.9.4.2
Aplique a propriedade distributiva.
Etapa 1.1.9.4.3
Aplique a propriedade distributiva.
Etapa 1.1.9.5
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.5.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.5.1.1.1
Mova .
Etapa 1.1.9.5.1.1.2
Multiplique por .
Etapa 1.1.9.5.1.2
Mova para a esquerda de .
Etapa 1.1.9.5.1.3
Multiplique por .
Etapa 1.1.9.5.2
Some e .
Etapa 1.1.9.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.9.6.1
Cancele o fator comum.
Etapa 1.1.9.6.2
Divida por .
Etapa 1.1.9.7
Aplique a propriedade distributiva.
Etapa 1.1.9.8
Multiplique por .
Etapa 1.1.9.9
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.9.1
Aplique a propriedade distributiva.
Etapa 1.1.9.9.2
Aplique a propriedade distributiva.
Etapa 1.1.9.9.3
Aplique a propriedade distributiva.
Etapa 1.1.9.10
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.10.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.10.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.10.1.1.1
Mova .
Etapa 1.1.9.10.1.1.2
Multiplique por .
Etapa 1.1.9.10.1.2
Mova para a esquerda de .
Etapa 1.1.9.10.1.3
Mova para a esquerda de .
Etapa 1.1.9.10.2
Some e .
Etapa 1.1.9.11
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.9.11.1
Cancele o fator comum.
Etapa 1.1.9.11.2
Divida por .
Etapa 1.1.9.12
Aplique a propriedade distributiva.
Etapa 1.1.9.13
Multiplique por .
Etapa 1.1.9.14
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.9.14.1
Aplique a propriedade distributiva.
Etapa 1.1.9.14.2
Aplique a propriedade distributiva.
Etapa 1.1.9.14.3
Aplique a propriedade distributiva.
Etapa 1.1.9.15
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.9.15.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.9.15.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.9.15.1.1.1
Mova .
Etapa 1.1.9.15.1.1.2
Multiplique por .
Etapa 1.1.9.15.1.2
Mova para a esquerda de .
Etapa 1.1.9.15.1.3
Mova para a esquerda de .
Etapa 1.1.9.15.2
Some e .
Etapa 1.1.10
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.10.1
Mova .
Etapa 1.1.10.2
Reordene e .
Etapa 1.1.10.3
Mova .
Etapa 1.1.10.4
Mova .
Etapa 1.1.10.5
Mova .
Etapa 1.1.10.6
Mova .
Etapa 1.1.10.7
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.4
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 1.3.1
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.1.1
Reescreva a equação como .
Etapa 1.3.1.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.1.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.1.2.2
Subtraia dos dois lados da equação.
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.2.2.1.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1.2.1
Multiplique por .
Etapa 1.3.2.2.1.1.2.2
Multiplique por .
Etapa 1.3.2.2.1.1.2.3
Multiplique por .
Etapa 1.3.2.2.1.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.3.2.2.1.2.1
Some e .
Etapa 1.3.2.2.1.2.2
Some e .
Etapa 1.3.2.3
Substitua todas as ocorrências de em por .
Etapa 1.3.2.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.4.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.2.4.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.2.4.1.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.2.4.1.1.2.1
Multiplique por .
Etapa 1.3.2.4.1.1.2.2
Multiplique por .
Etapa 1.3.2.4.1.1.2.3
Multiplique por .
Etapa 1.3.2.4.1.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 1.3.2.4.1.2.1
Some e .
Etapa 1.3.2.4.1.2.2
Some e .
Etapa 1.3.3
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.3.1
Reescreva a equação como .
Etapa 1.3.3.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.3.2.2
Some aos dois lados da equação.
Etapa 1.3.3.2.3
Subtraia de .
Etapa 1.3.3.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.3.3.1
Divida cada termo em por .
Etapa 1.3.3.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.3.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.3.3.2.1.1
Cancele o fator comum.
Etapa 1.3.3.3.2.1.2
Divida por .
Etapa 1.3.3.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.3.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.3.3.3.1.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.3.3.3.3.1.2
Mova o número negativo para a frente da fração.
Etapa 1.3.4
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.4.1
Substitua todas as ocorrências de em por .
Etapa 1.3.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.4.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.4.2.1.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 1.3.4.2.1.1.2.1
Multiplique por .
Etapa 1.3.4.2.1.1.2.2
Multiplique por .
Etapa 1.3.4.2.1.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4.2.1.3
Combine e .
Etapa 1.3.4.2.1.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.2.1.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.4.2.1.5.1
Multiplique por .
Etapa 1.3.4.2.1.5.2
Subtraia de .
Etapa 1.3.4.2.1.6
Mova o número negativo para a frente da fração.
Etapa 1.3.4.2.1.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4.2.1.8
Combine e .
Etapa 1.3.4.2.1.9
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.2.1.10
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.2.1.11
Multiplique por .
Etapa 1.3.4.2.1.12
Subtraia de .
Etapa 1.3.4.2.1.13
Reescreva como .
Etapa 1.3.4.2.1.14
Fatore de .
Etapa 1.3.4.2.1.15
Fatore de .
Etapa 1.3.4.2.1.16
Mova o número negativo para a frente da fração.
Etapa 1.3.4.3
Substitua todas as ocorrências de em por .
Etapa 1.3.4.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.4.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.4.4.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.4.4.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.4.4.1.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 1.3.4.4.1.1.2.1
Multiplique por .
Etapa 1.3.4.4.1.1.2.2
Multiplique por .
Etapa 1.3.4.4.1.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4.4.1.3
Combine e .
Etapa 1.3.4.4.1.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.4.1.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.4.4.1.5.1
Multiplique por .
Etapa 1.3.4.4.1.5.2
Subtraia de .
Etapa 1.3.4.4.1.6
Mova o número negativo para a frente da fração.
Etapa 1.3.4.4.1.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4.4.1.8
Combine e .
Etapa 1.3.4.4.1.9
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.4.1.10
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.4.4.1.11
Multiplique por .
Etapa 1.3.4.4.1.12
Subtraia de .
Etapa 1.3.4.4.1.13
Reescreva como .
Etapa 1.3.4.4.1.14
Fatore de .
Etapa 1.3.4.4.1.15
Fatore de .
Etapa 1.3.4.4.1.16
Mova o número negativo para a frente da fração.
Etapa 1.3.5
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.5.1
Reescreva a equação como .
Etapa 1.3.5.2
Multiplique os dois lados da equação por .
Etapa 1.3.5.3
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 1.3.5.3.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.5.3.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.5.3.1.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.5.3.1.1.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 1.3.5.3.1.1.1.2
Fatore de .
Etapa 1.3.5.3.1.1.1.3
Cancele o fator comum.
Etapa 1.3.5.3.1.1.1.4
Reescreva a expressão.
Etapa 1.3.5.3.1.1.2
Multiplique.
Toque para ver mais passagens...
Etapa 1.3.5.3.1.1.2.1
Multiplique por .
Etapa 1.3.5.3.1.1.2.2
Multiplique por .
Etapa 1.3.5.3.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.5.3.2.1
Multiplique por .
Etapa 1.3.5.4
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.5.4.1
Subtraia dos dois lados da equação.
Etapa 1.3.5.4.2
Subtraia de .
Etapa 1.3.5.5
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.5.5.1
Divida cada termo em por .
Etapa 1.3.5.5.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.5.5.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.5.5.2.1.1
Cancele o fator comum.
Etapa 1.3.5.5.2.1.2
Divida por .
Etapa 1.3.5.5.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.5.5.3.1
Divida por .
Etapa 1.3.6
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.6.1
Substitua todas as ocorrências de em por .
Etapa 1.3.6.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.6.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.6.2.1.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.6.2.1.1.1
Multiplique por .
Etapa 1.3.6.2.1.1.2
Subtraia de .
Etapa 1.3.6.2.1.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.3.6.2.1.2.1
Divida por .
Etapa 1.3.6.2.1.2.2
Multiplique por .
Etapa 1.3.6.3
Substitua todas as ocorrências de em por .
Etapa 1.3.6.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.6.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.6.4.1.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.6.4.1.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.3.6.4.1.2.1
Multiplique por .
Etapa 1.3.6.4.1.2.2
Subtraia de .
Etapa 1.3.6.4.1.2.3
Divida por .
Etapa 1.3.7
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para , e .
Etapa 1.5
Mova o número negativo para a frente da fração.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Multiplique por .
Etapa 6
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 6.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 6.1.1
Diferencie .
Etapa 6.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 6.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 6.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 6.1.5
Some e .
Etapa 6.2
Reescreva o problema usando e .
Etapa 7
A integral de com relação a é .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 9.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 9.1.1
Diferencie .
Etapa 9.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 9.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 9.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 9.1.5
Some e .
Etapa 9.2
Reescreva o problema usando e .
Etapa 10
A integral de com relação a é .
Etapa 11
Como é constante com relação a , mova para fora da integral.
Etapa 12
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 12.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 12.1.1
Diferencie .
Etapa 12.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 12.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 12.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 12.1.5
Some e .
Etapa 12.2
Reescreva o problema usando e .
Etapa 13
A integral de com relação a é .
Etapa 14
Simplifique.
Etapa 15
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 15.1
Substitua todas as ocorrências de por .
Etapa 15.2
Substitua todas as ocorrências de por .
Etapa 15.3
Substitua todas as ocorrências de por .