Insira um problema...
Cálculo Exemplos
,
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie usando a regra do múltiplo constante.
Etapa 1.1.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2
Reescreva como .
Etapa 1.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Substitua todas as ocorrências de por .
Etapa 1.1.3
Diferencie.
Etapa 1.1.3.1
Multiplique por .
Etapa 1.1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.5
Simplifique a expressão.
Etapa 1.1.3.5.1
Some e .
Etapa 1.1.3.5.2
Multiplique por .
Etapa 1.1.4
Simplifique.
Etapa 1.1.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.4.2
Combine os termos.
Etapa 1.1.4.2.1
Combine e .
Etapa 1.1.4.2.2
Mova o número negativo para a frente da fração.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Para saber se a função é contínua em ou não, encontre o domínio de .
Etapa 2.1.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 2.1.2
Resolva .
Etapa 2.1.2.1
Defina como igual a .
Etapa 2.1.2.2
Some aos dois lados da equação.
Etapa 2.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 2.2
é contínuo em .
A função é contínua.
A função é contínua.
Etapa 3
A função é diferenciável em , porque a derivada é contínua em .
A função é diferenciável.
Etapa 4