Cálculo Exemplos

Encontre a Concavidade y=x-sin(x)
Etapa 1
Escreva como uma função.
Etapa 2
Find the values where the second derivative is equal to .
Toque para ver mais passagens...
Etapa 2.1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 2.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.1.2.2
A derivada de em relação a é .
Etapa 2.1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1.2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.2.2
A derivada de em relação a é .
Etapa 2.1.2.2.3
Multiplique por .
Etapa 2.1.2.2.4
Multiplique por .
Etapa 2.1.2.3
Some e .
Etapa 2.1.3
A segunda derivada de com relação a é .
Etapa 2.2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.2.1
Defina a segunda derivada como igual a .
Etapa 2.2.2
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.3.1
O valor exato de é .
Etapa 2.2.4
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 2.2.5
Subtraia de .
Etapa 2.2.6
Encontre o período de .
Toque para ver mais passagens...
Etapa 2.2.6.1
O período da função pode ser calculado ao usar .
Etapa 2.2.6.2
Substitua por na fórmula do período.
Etapa 2.2.6.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.2.6.4
Divida por .
Etapa 2.2.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
Etapa 2.2.8
Consolide as respostas.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 3
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4
Crie intervalos em torno dos valores , em que a segunda derivada é zero ou indefinida.
Etapa 5
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
O valor exato de é .
Etapa 5.2.2
A resposta final é .
Etapa 5.3
O gráfico tem concavidade para cima no intervalo porque é positivo.
Concavidade para cima em , já que é positivo
Concavidade para cima em , já que é positivo
Etapa 6