Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Reescreva como .
Etapa 1.1.2
Expanda usando o método FOIL.
Etapa 1.1.2.1
Aplique a propriedade distributiva.
Etapa 1.1.2.2
Aplique a propriedade distributiva.
Etapa 1.1.2.3
Aplique a propriedade distributiva.
Etapa 1.1.3
Simplifique e combine termos semelhantes.
Etapa 1.1.3.1
Simplifique cada termo.
Etapa 1.1.3.1.1
Multiplique por .
Etapa 1.1.3.1.2
Mova para a esquerda de .
Etapa 1.1.3.1.3
Multiplique por .
Etapa 1.1.3.2
Subtraia de .
Etapa 1.1.4
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.1.5
Diferencie.
Etapa 1.1.5.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.5.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.5.4
Simplifique a expressão.
Etapa 1.1.5.4.1
Some e .
Etapa 1.1.5.4.2
Multiplique por .
Etapa 1.1.5.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.5.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.5.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.5.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.5.9
Multiplique por .
Etapa 1.1.5.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.5.11
Some e .
Etapa 1.1.6
Simplifique.
Etapa 1.1.6.1
Aplique a propriedade distributiva.
Etapa 1.1.6.2
Aplique a propriedade distributiva.
Etapa 1.1.6.3
Aplique a propriedade distributiva.
Etapa 1.1.6.4
Combine os termos.
Etapa 1.1.6.4.1
Eleve à potência de .
Etapa 1.1.6.4.2
Eleve à potência de .
Etapa 1.1.6.4.3
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.6.4.4
Some e .
Etapa 1.1.6.4.5
Multiplique por .
Etapa 1.1.6.4.6
Mova para a esquerda de .
Etapa 1.1.6.4.7
Multiplique por .
Etapa 1.1.6.4.8
Subtraia de .
Etapa 1.1.6.4.9
Some e .
Etapa 1.1.6.4.10
Subtraia de .
Etapa 1.1.6.4.11
Some e .
Etapa 1.2
Encontre a segunda derivada.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Avalie .
Etapa 1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2.3
Multiplique por .
Etapa 1.2.3
Avalie .
Etapa 1.2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3.3
Multiplique por .
Etapa 1.2.4
Diferencie usando a regra da constante.
Etapa 1.2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4.2
Some e .
Etapa 1.3
A segunda derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a segunda derivada como igual a .
Etapa 2.2
Some aos dois lados da equação.
Etapa 2.3
Divida cada termo em por e simplifique.
Etapa 2.3.1
Divida cada termo em por .
Etapa 2.3.2
Simplifique o lado esquerdo.
Etapa 2.3.2.1
Cancele o fator comum de .
Etapa 2.3.2.1.1
Cancele o fator comum.
Etapa 2.3.2.1.2
Divida por .
Etapa 2.3.3
Simplifique o lado direito.
Etapa 2.3.3.1
Divida por .
Etapa 3
Etapa 3.1
Substitua em para encontrar o valor de .
Etapa 3.1.1
Substitua a variável por na expressão.
Etapa 3.1.2
Simplifique o resultado.
Etapa 3.1.2.1
Subtraia de .
Etapa 3.1.2.2
Eleve à potência de .
Etapa 3.1.2.3
Multiplique por .
Etapa 3.1.2.4
Subtraia de .
Etapa 3.1.2.5
A resposta final é .
Etapa 3.2
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 4
Divida em intervalos em torno dos pontos que poderiam ser pontos de inflexão.
Etapa 5
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Etapa 5.2.1
Multiplique por .
Etapa 5.2.2
Subtraia de .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a segunda derivada é . Por ser negativa, a segunda derivada diminui no intervalo .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Multiplique por .
Etapa 6.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
O ponto de inflexão é um ponto em uma curva em que a concavidade muda do sinal de adição para o de subtração ou vice-versa. Neste caso, o ponto de inflexão é .
Etapa 8