Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
Etapa 2.1
Encontre a primeira derivada.
Etapa 2.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.1.3
Substitua todas as ocorrências de por .
Etapa 2.1.2
Diferencie.
Etapa 2.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.4
Simplifique a expressão.
Etapa 2.1.2.4.1
Some e .
Etapa 2.1.2.4.2
Multiplique por .
Etapa 2.2
A primeira derivada de com relação a é .
Etapa 3
Etapa 3.1
Defina a primeira derivada como igual a .
Etapa 3.2
Divida cada termo em por e simplifique.
Etapa 3.2.1
Divida cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Etapa 3.2.2.1
Cancele o fator comum de .
Etapa 3.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.1.2
Divida por .
Etapa 3.2.3
Simplifique o lado direito.
Etapa 3.2.3.1
Divida por .
Etapa 3.3
Defina como igual a .
Etapa 3.4
Some aos dois lados da equação.
Etapa 4
Os valores, que tornam a derivada igual a , são .
Etapa 5
Depois de encontrar o ponto que torna a derivada igual a ou indefinida, o intervalo para verificar onde está aumentando e onde está diminuindo é .
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Subtraia de .
Etapa 6.2.2
Eleve à potência de .
Etapa 6.2.3
Multiplique por .
Etapa 6.2.4
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Etapa 7.2.1
Subtraia de .
Etapa 7.2.2
Um elevado a qualquer potência é um.
Etapa 7.2.3
Multiplique por .
Etapa 7.2.4
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Etapa 9