Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.1.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Substitua todas as ocorrências de por .
Etapa 1.1.4
Diferencie.
Etapa 1.1.4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.4.4
Simplifique a expressão.
Etapa 1.1.4.4.1
Some e .
Etapa 1.1.4.4.2
Multiplique por .
Etapa 1.1.4.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4.6
Multiplique por .
Etapa 1.1.5
Simplifique.
Etapa 1.1.5.1
Aplique a propriedade distributiva.
Etapa 1.1.5.2
Multiplique por .
Etapa 1.1.5.3
Fatore de .
Etapa 1.1.5.3.1
Fatore de .
Etapa 1.1.5.3.2
Fatore de .
Etapa 1.1.5.3.3
Fatore de .
Etapa 1.1.5.4
Some e .
Etapa 1.1.5.5
Reescreva como .
Etapa 1.1.5.6
Expanda usando o método FOIL.
Etapa 1.1.5.6.1
Aplique a propriedade distributiva.
Etapa 1.1.5.6.2
Aplique a propriedade distributiva.
Etapa 1.1.5.6.3
Aplique a propriedade distributiva.
Etapa 1.1.5.7
Simplifique e combine termos semelhantes.
Etapa 1.1.5.7.1
Simplifique cada termo.
Etapa 1.1.5.7.1.1
Multiplique por .
Etapa 1.1.5.7.1.2
Mova para a esquerda de .
Etapa 1.1.5.7.1.3
Multiplique por .
Etapa 1.1.5.7.2
Subtraia de .
Etapa 1.1.5.8
Aplique a propriedade distributiva.
Etapa 1.1.5.9
Simplifique.
Etapa 1.1.5.9.1
Multiplique por .
Etapa 1.1.5.9.2
Multiplique por .
Etapa 1.1.5.10
Expanda multiplicando cada termo na primeira expressão por cada um dos termos na segunda expressão.
Etapa 1.1.5.11
Simplifique cada termo.
Etapa 1.1.5.11.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.5.11.2
Multiplique por somando os expoentes.
Etapa 1.1.5.11.2.1
Mova .
Etapa 1.1.5.11.2.2
Multiplique por .
Etapa 1.1.5.11.2.2.1
Eleve à potência de .
Etapa 1.1.5.11.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.5.11.2.3
Some e .
Etapa 1.1.5.11.3
Multiplique por .
Etapa 1.1.5.11.4
Multiplique por .
Etapa 1.1.5.11.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.5.11.6
Multiplique por somando os expoentes.
Etapa 1.1.5.11.6.1
Mova .
Etapa 1.1.5.11.6.2
Multiplique por .
Etapa 1.1.5.11.7
Multiplique por .
Etapa 1.1.5.11.8
Multiplique por .
Etapa 1.1.5.11.9
Multiplique por .
Etapa 1.1.5.11.10
Multiplique por .
Etapa 1.1.5.12
Subtraia de .
Etapa 1.1.5.13
Some e .
Etapa 1.2
Encontre a segunda derivada.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Avalie .
Etapa 1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2.3
Multiplique por .
Etapa 1.2.3
Avalie .
Etapa 1.2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3.3
Multiplique por .
Etapa 1.2.4
Avalie .
Etapa 1.2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.4.3
Multiplique por .
Etapa 1.2.5
Diferencie usando a regra da constante.
Etapa 1.2.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.5.2
Some e .
Etapa 1.3
A segunda derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a segunda derivada como igual a .
Etapa 2.2
Fatore o lado esquerdo da equação.
Etapa 2.2.1
Fatore de .
Etapa 2.2.1.1
Fatore de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Fatore de .
Etapa 2.2.1.4
Fatore de .
Etapa 2.2.1.5
Fatore de .
Etapa 2.2.2
Fatore.
Etapa 2.2.2.1
Fatore usando o método AC.
Etapa 2.2.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 2.2.2.2
Remova os parênteses desnecessários.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Some aos dois lados da equação.
Etapa 2.5
Defina como igual a e resolva para .
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Some aos dois lados da equação.
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Etapa 3.1
Substitua em para encontrar o valor de .
Etapa 3.1.1
Substitua a variável por na expressão.
Etapa 3.1.2
Simplifique o resultado.
Etapa 3.1.2.1
Multiplique por .
Etapa 3.1.2.2
Subtraia de .
Etapa 3.1.2.3
Elevar a qualquer potência positiva produz .
Etapa 3.1.2.4
Multiplique por .
Etapa 3.1.2.5
A resposta final é .
Etapa 3.2
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.3
Substitua em para encontrar o valor de .
Etapa 3.3.1
Substitua a variável por na expressão.
Etapa 3.3.2
Simplifique o resultado.
Etapa 3.3.2.1
Multiplique por .
Etapa 3.3.2.2
Subtraia de .
Etapa 3.3.2.3
Eleve à potência de .
Etapa 3.3.2.4
Multiplique por .
Etapa 3.3.2.5
A resposta final é .
Etapa 3.4
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.5
Determine os pontos que poderiam ser de inflexão.
Etapa 4
Divida em intervalos em torno dos pontos que poderiam ser pontos de inflexão.
Etapa 5
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Etapa 5.2.1
Simplifique cada termo.
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.1.3
Multiplique por .
Etapa 5.2.2
Simplifique somando e subtraindo.
Etapa 5.2.2.1
Subtraia de .
Etapa 5.2.2.2
Some e .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Simplifique cada termo.
Etapa 6.2.1.1
Eleve à potência de .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.2
Simplifique somando e subtraindo.
Etapa 6.2.2.1
Subtraia de .
Etapa 6.2.2.2
Some e .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a segunda derivada é . Por ser negativa, a segunda derivada diminui no intervalo .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Etapa 7.2.1
Simplifique cada termo.
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Multiplique por .
Etapa 7.2.1.3
Multiplique por .
Etapa 7.2.2
Simplifique somando e subtraindo.
Etapa 7.2.2.1
Subtraia de .
Etapa 7.2.2.2
Some e .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Etapa 9