Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas f(x)=3x^5-5x^3
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.2.1
Reescreva como .
Etapa 2.2.2
Deixe . Substitua em todas as ocorrências de .
Etapa 2.2.3
Fatore de .
Toque para ver mais passagens...
Etapa 2.2.3.1
Fatore de .
Etapa 2.2.3.2
Fatore de .
Etapa 2.2.3.3
Fatore de .
Etapa 2.2.4
Substitua todas as ocorrências de por .
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.4.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 2.4.2.2.1
Reescreva como .
Etapa 2.4.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.4.2.2.3
Mais ou menos é .
Etapa 2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.5.2.1
Some aos dois lados da equação.
Etapa 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.5.2.3
Qualquer raiz de é .
Etapa 2.5.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.5.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.5.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.5.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.1.3
Eleve à potência de .
Etapa 5.2.1.4
Multiplique por .
Etapa 5.2.2
Subtraia de .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Use a regra da multiplicação de potências para distribuir o expoente.
Toque para ver mais passagens...
Etapa 6.2.1.1.1
Aplique a regra do produto a .
Etapa 6.2.1.1.2
Aplique a regra do produto a .
Etapa 6.2.1.2
Eleve à potência de .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.1.4
Um elevado a qualquer potência é um.
Etapa 6.2.1.5
Eleve à potência de .
Etapa 6.2.1.6
Combine e .
Etapa 6.2.1.7
Use a regra da multiplicação de potências para distribuir o expoente.
Toque para ver mais passagens...
Etapa 6.2.1.7.1
Aplique a regra do produto a .
Etapa 6.2.1.7.2
Aplique a regra do produto a .
Etapa 6.2.1.8
Eleve à potência de .
Etapa 6.2.1.9
Multiplique por .
Etapa 6.2.1.10
Um elevado a qualquer potência é um.
Etapa 6.2.1.11
Eleve à potência de .
Etapa 6.2.1.12
Combine e .
Etapa 6.2.1.13
Mova o número negativo para a frente da fração.
Etapa 6.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 6.2.3.1
Multiplique por .
Etapa 6.2.3.2
Multiplique por .
Etapa 6.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.5.1
Multiplique por .
Etapa 6.2.5.2
Subtraia de .
Etapa 6.2.6
Mova o número negativo para a frente da fração.
Etapa 6.2.7
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Aplique a regra do produto a .
Etapa 7.2.1.2
Um elevado a qualquer potência é um.
Etapa 7.2.1.3
Eleve à potência de .
Etapa 7.2.1.4
Combine e .
Etapa 7.2.1.5
Aplique a regra do produto a .
Etapa 7.2.1.6
Um elevado a qualquer potência é um.
Etapa 7.2.1.7
Eleve à potência de .
Etapa 7.2.1.8
Combine e .
Etapa 7.2.1.9
Mova o número negativo para a frente da fração.
Etapa 7.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 7.2.3.1
Multiplique por .
Etapa 7.2.3.2
Multiplique por .
Etapa 7.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 7.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 7.2.5.1
Multiplique por .
Etapa 7.2.5.2
Subtraia de .
Etapa 7.2.6
Mova o número negativo para a frente da fração.
Etapa 7.2.7
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 8.1
Substitua a variável por na expressão.
Etapa 8.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 8.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 8.2.1.1
Eleve à potência de .
Etapa 8.2.1.2
Multiplique por .
Etapa 8.2.1.3
Eleve à potência de .
Etapa 8.2.1.4
Multiplique por .
Etapa 8.2.2
Subtraia de .
Etapa 8.2.3
A resposta final é .
Etapa 8.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 9
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 10