Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas f(x)=19x+1/x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Reescreva como .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.5
Reordene os termos.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Subtraia dos dois lados da equação.
Etapa 2.3
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 2.3.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.3.2
O MMC de um e qualquer expressão é a expressão.
Etapa 2.4
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.4.1
Multiplique cada termo em por .
Etapa 2.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.2.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.4.2.1.2
Cancele o fator comum.
Etapa 2.4.2.1.3
Reescreva a expressão.
Etapa 2.5
Resolva a equação.
Toque para ver mais passagens...
Etapa 2.5.1
Reescreva a equação como .
Etapa 2.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.1
Divida cada termo em por .
Etapa 2.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.2.1.1
Cancele o fator comum.
Etapa 2.5.2.2.1.2
Divida por .
Etapa 2.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.5.4
Simplifique .
Toque para ver mais passagens...
Etapa 2.5.4.1
Reescreva como .
Etapa 2.5.4.2
Qualquer raiz de é .
Etapa 2.5.4.3
Multiplique por .
Etapa 2.5.4.4
Combine e simplifique o denominador.
Toque para ver mais passagens...
Etapa 2.5.4.4.1
Multiplique por .
Etapa 2.5.4.4.2
Eleve à potência de .
Etapa 2.5.4.4.3
Eleve à potência de .
Etapa 2.5.4.4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.5.4.4.5
Some e .
Etapa 2.5.4.4.6
Reescreva como .
Toque para ver mais passagens...
Etapa 2.5.4.4.6.1
Use para reescrever como .
Etapa 2.5.4.4.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.5.4.4.6.3
Combine e .
Etapa 2.5.4.4.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.4.4.6.4.1
Cancele o fator comum.
Etapa 2.5.4.4.6.4.2
Reescreva a expressão.
Etapa 2.5.4.4.6.5
Avalie o expoente.
Etapa 2.5.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.5.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.5.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.5.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Encontre onde a derivada é indefinida.
Toque para ver mais passagens...
Etapa 4.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 4.2
Resolva .
Toque para ver mais passagens...
Etapa 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 4.2.2.1
Reescreva como .
Etapa 4.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.2.2.3
Mais ou menos é .
Etapa 5
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Eleve à potência de .
Etapa 6.2.1.2
Divida por .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.2
Some e .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Divida por .
Etapa 7.2.1.3
Multiplique por .
Etapa 7.2.2
Some e .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 8.1
Substitua a variável por na expressão.
Etapa 8.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 8.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 8.2.1.1
Eleve à potência de .
Etapa 8.2.1.2
Divida por .
Etapa 8.2.1.3
Multiplique por .
Etapa 8.2.2
Some e .
Etapa 8.2.3
A resposta final é .
Etapa 8.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 9
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 9.1
Substitua a variável por na expressão.
Etapa 9.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 9.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 9.2.1.1
Eleve à potência de .
Etapa 9.2.1.2
Divida por .
Etapa 9.2.1.3
Multiplique por .
Etapa 9.2.2
Some e .
Etapa 9.2.3
A resposta final é .
Etapa 9.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 10
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 11