Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.1.2
Diferencie.
Etapa 1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.4
Simplifique a expressão.
Etapa 1.1.2.4.1
Some e .
Etapa 1.1.2.4.2
Multiplique por .
Etapa 1.1.2.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.8
Simplifique a expressão.
Etapa 1.1.2.8.1
Some e .
Etapa 1.1.2.8.2
Multiplique por .
Etapa 1.1.3
Simplifique.
Etapa 1.1.3.1
Aplique a propriedade distributiva.
Etapa 1.1.3.2
Aplique a propriedade distributiva.
Etapa 1.1.3.3
Simplifique o numerador.
Etapa 1.1.3.3.1
Simplifique cada termo.
Etapa 1.1.3.3.1.1
Multiplique por somando os expoentes.
Etapa 1.1.3.3.1.1.1
Mova .
Etapa 1.1.3.3.1.1.2
Multiplique por .
Etapa 1.1.3.3.1.2
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.4
Reordene os termos.
Etapa 1.1.3.5
Fatore por agrupamento.
Etapa 1.1.3.5.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 1.1.3.5.1.1
Fatore de .
Etapa 1.1.3.5.1.2
Reescreva como mais
Etapa 1.1.3.5.1.3
Aplique a propriedade distributiva.
Etapa 1.1.3.5.2
Fatore o máximo divisor comum de cada grupo.
Etapa 1.1.3.5.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 1.1.3.5.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 1.1.3.5.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 1.1.3.6
Fatore de .
Etapa 1.1.3.7
Reescreva como .
Etapa 1.1.3.8
Fatore de .
Etapa 1.1.3.9
Reescreva como .
Etapa 1.1.3.10
Mova o número negativo para a frente da fração.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Defina o numerador como igual a zero.
Etapa 2.3
Resolva a equação para .
Etapa 2.3.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.3.2
Defina como igual a e resolva para .
Etapa 2.3.2.1
Defina como igual a .
Etapa 2.3.2.2
Subtraia dos dois lados da equação.
Etapa 2.3.3
Defina como igual a e resolva para .
Etapa 2.3.3.1
Defina como igual a .
Etapa 2.3.3.2
Some aos dois lados da equação.
Etapa 2.3.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Etapa 5.2.1
Simplifique o numerador.
Etapa 5.2.1.1
Some e .
Etapa 5.2.1.2
Subtraia de .
Etapa 5.2.2
Simplifique o denominador.
Etapa 5.2.2.1
Eleve à potência de .
Etapa 5.2.2.2
Some e .
Etapa 5.2.2.3
Eleve à potência de .
Etapa 5.2.3
Multiplique por .
Etapa 5.2.4
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Simplifique o numerador.
Etapa 6.2.1.1
Some e .
Etapa 6.2.1.2
Subtraia de .
Etapa 6.2.2
Simplifique o denominador.
Etapa 6.2.2.1
Um elevado a qualquer potência é um.
Etapa 6.2.2.2
Some e .
Etapa 6.2.2.3
Eleve à potência de .
Etapa 6.2.3
Reduza a expressão cancelando os fatores comuns.
Etapa 6.2.3.1
Multiplique por .
Etapa 6.2.3.2
Cancele o fator comum de e .
Etapa 6.2.3.2.1
Fatore de .
Etapa 6.2.3.2.2
Cancele os fatores comuns.
Etapa 6.2.3.2.2.1
Fatore de .
Etapa 6.2.3.2.2.2
Cancele o fator comum.
Etapa 6.2.3.2.2.3
Reescreva a expressão.
Etapa 6.2.3.3
Mova o número negativo para a frente da fração.
Etapa 6.2.4
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Etapa 7.2.1
Simplifique o numerador.
Etapa 7.2.1.1
Some e .
Etapa 7.2.1.2
Subtraia de .
Etapa 7.2.2
Simplifique o denominador.
Etapa 7.2.2.1
Eleve à potência de .
Etapa 7.2.2.2
Some e .
Etapa 7.2.2.3
Eleve à potência de .
Etapa 7.2.3
Multiplique por .
Etapa 7.2.4
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9