Cálculo Exemplos

Encontre o Máximo e Mínimo Absolutos sobre o Intervalo f(x)=4 raiz quadrada de x+5 , [4,7]
,
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Use para reescrever como .
Etapa 1.1.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.1.2.5
Combine e .
Etapa 1.1.1.2.6
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.1.2.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.1.1.2.7.1
Multiplique por .
Etapa 1.1.1.2.7.2
Subtraia de .
Etapa 1.1.1.2.8
Mova o número negativo para a frente da fração.
Etapa 1.1.1.2.9
Combine e .
Etapa 1.1.1.2.10
Combine e .
Etapa 1.1.1.2.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.1.1.2.12
Fatore de .
Etapa 1.1.1.2.13
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.1.2.13.1
Fatore de .
Etapa 1.1.1.2.13.2
Cancele o fator comum.
Etapa 1.1.1.2.13.3
Reescreva a expressão.
Etapa 1.1.1.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Defina o numerador como igual a zero.
Etapa 1.2.3
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 1.3.1
Converta expressões com expoentes fracionários em radicais.
Toque para ver mais passagens...
Etapa 1.3.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 1.3.1.2
Qualquer número elevado a é a própria base.
Etapa 1.3.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 1.3.3
Resolva .
Toque para ver mais passagens...
Etapa 1.3.3.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 1.3.3.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Use para reescrever como .
Etapa 1.3.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.3.2.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 1.3.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 1.3.3.2.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 1.3.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 1.3.3.2.2.1.2
Simplifique.
Etapa 1.3.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 1.3.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 1.3.5
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 1.4.1
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1.2.1
Remova os parênteses.
Etapa 1.4.1.2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.2.1
Reescreva como .
Etapa 1.4.1.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 1.4.1.2.2.3
Multiplique por .
Etapa 1.4.1.2.3
Some e .
Etapa 1.4.2
Liste todos os pontos.
Etapa 2
Exclua os pontos que não estão no intervalo.
Etapa 3
Avalie nos pontos finais incluídos.
Toque para ver mais passagens...
Etapa 3.1
Avalie em .
Toque para ver mais passagens...
Etapa 3.1.1
Substitua por .
Etapa 3.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.1.2.1
Remova os parênteses.
Etapa 3.1.2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.2.1
Reescreva como .
Etapa 3.1.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.1.2.2.3
Multiplique por .
Etapa 3.1.2.3
Some e .
Etapa 3.2
Avalie em .
Toque para ver mais passagens...
Etapa 3.2.1
Substitua por .
Etapa 3.2.2
Remova os parênteses.
Etapa 3.3
Liste todos os pontos.
Etapa 4
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Máximo absoluto:
Mínimo absoluto:
Etapa 5