Cálculo Exemplos

Encontre o Máximo e Mínimo Absolutos sobre o Intervalo f(x)=2x^3-3x^2-12x+1 , [-2,3]
,
Etapa 1
Encontre os pontos críticos.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Multiplique por .
Etapa 1.1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.3.3
Multiplique por .
Etapa 1.1.1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.4.3
Multiplique por .
Etapa 1.1.1.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.5.2
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 1.2.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.2.2.1.1
Fatore de .
Etapa 1.2.2.1.2
Fatore de .
Etapa 1.2.2.1.3
Fatore de .
Etapa 1.2.2.1.4
Fatore de .
Etapa 1.2.2.1.5
Fatore de .
Etapa 1.2.2.2
Fatore.
Toque para ver mais passagens...
Etapa 1.2.2.2.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 1.2.2.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 1.2.2.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 1.2.2.2.2
Remova os parênteses desnecessários.
Etapa 1.2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 1.2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 1.2.4.1
Defina como igual a .
Etapa 1.2.4.2
Some aos dois lados da equação.
Etapa 1.2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 1.2.5.1
Defina como igual a .
Etapa 1.2.5.2
Subtraia dos dois lados da equação.
Etapa 1.2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 1.3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 1.4.1
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 1.4.1.2.1.1.1.1
Eleve à potência de .
Etapa 1.4.1.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.4.1.2.1.1.2
Some e .
Etapa 1.4.1.2.1.2
Eleve à potência de .
Etapa 1.4.1.2.1.3
Eleve à potência de .
Etapa 1.4.1.2.1.4
Multiplique por .
Etapa 1.4.1.2.1.5
Multiplique por .
Etapa 1.4.1.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 1.4.1.2.2.1
Subtraia de .
Etapa 1.4.1.2.2.2
Subtraia de .
Etapa 1.4.1.2.2.3
Some e .
Etapa 1.4.2
Avalie em .
Toque para ver mais passagens...
Etapa 1.4.2.1
Substitua por .
Etapa 1.4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 1.4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.2.1.1
Eleve à potência de .
Etapa 1.4.2.2.1.2
Multiplique por .
Etapa 1.4.2.2.1.3
Eleve à potência de .
Etapa 1.4.2.2.1.4
Multiplique por .
Etapa 1.4.2.2.1.5
Multiplique por .
Etapa 1.4.2.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 1.4.2.2.2.1
Subtraia de .
Etapa 1.4.2.2.2.2
Some e .
Etapa 1.4.2.2.2.3
Some e .
Etapa 1.4.3
Liste todos os pontos.
Etapa 2
Avalie nos pontos finais incluídos.
Toque para ver mais passagens...
Etapa 2.1
Avalie em .
Toque para ver mais passagens...
Etapa 2.1.1
Substitua por .
Etapa 2.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.1.1
Eleve à potência de .
Etapa 2.1.2.1.2
Multiplique por .
Etapa 2.1.2.1.3
Eleve à potência de .
Etapa 2.1.2.1.4
Multiplique por .
Etapa 2.1.2.1.5
Multiplique por .
Etapa 2.1.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 2.1.2.2.1
Subtraia de .
Etapa 2.1.2.2.2
Some e .
Etapa 2.1.2.2.3
Some e .
Etapa 2.2
Avalie em .
Toque para ver mais passagens...
Etapa 2.2.1
Substitua por .
Etapa 2.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Eleve à potência de .
Etapa 2.2.2.1.2
Multiplique por .
Etapa 2.2.2.1.3
Eleve à potência de .
Etapa 2.2.2.1.4
Multiplique por .
Etapa 2.2.2.1.5
Multiplique por .
Etapa 2.2.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 2.2.2.2.1
Subtraia de .
Etapa 2.2.2.2.2
Subtraia de .
Etapa 2.2.2.2.3
Some e .
Etapa 2.3
Liste todos os pontos.
Etapa 3
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Máximo absoluto:
Mínimo absoluto:
Etapa 4