Insira um problema...
Cálculo Exemplos
,
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Encontre a primeira derivada.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.4
Some e .
Etapa 1.1.2
A primeira derivada de com relação a é .
Etapa 1.2
Defina a primeira derivada como igual a e resolva a equação .
Etapa 1.2.1
Defina a primeira derivada como igual a .
Etapa 1.2.2
Divida cada termo em por e simplifique.
Etapa 1.2.2.1
Divida cada termo em por .
Etapa 1.2.2.2
Simplifique o lado esquerdo.
Etapa 1.2.2.2.1
Cancele o fator comum de .
Etapa 1.2.2.2.1.1
Cancele o fator comum.
Etapa 1.2.2.2.1.2
Divida por .
Etapa 1.2.2.3
Simplifique o lado direito.
Etapa 1.2.2.3.1
Divida por .
Etapa 1.3
Encontre os valores em que a derivada é indefinida.
Etapa 1.3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 1.4
Avalie em cada valor em que a derivada é ou indefinida.
Etapa 1.4.1
Avalie em .
Etapa 1.4.1.1
Substitua por .
Etapa 1.4.1.2
Simplifique.
Etapa 1.4.1.2.1
Elevar a qualquer potência positiva produz .
Etapa 1.4.1.2.2
Subtraia de .
Etapa 1.4.2
Liste todos os pontos.
Etapa 2
Etapa 2.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 2.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 2.2.1
Substitua a variável por na expressão.
Etapa 2.2.2
Simplifique o resultado.
Etapa 2.2.2.1
Multiplique por .
Etapa 2.2.2.2
A resposta final é .
Etapa 2.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 2.3.1
Substitua a variável por na expressão.
Etapa 2.3.2
Simplifique o resultado.
Etapa 2.3.2.1
Multiplique por .
Etapa 2.3.2.2
A resposta final é .
Etapa 2.4
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
é um mínimo local
Etapa 3
Compare os valores de encontrados para cada valor de para determinar o máximo e mínimo absolutos no intervalo determinado. O máximo ocorrerá no valor mais alto de , e o mínimo ocorrerá no valor mais baixo de .
Nenhum máximo absoluto
Mínimo absoluto:
Etapa 4