Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Diferencie usando a regra da constante.
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Some e .
Etapa 2
Etapa 2.1
Some aos dois lados da equação.
Etapa 2.2
Divida cada termo em por e simplifique.
Etapa 2.2.1
Divida cada termo em por .
Etapa 2.2.2
Simplifique o lado esquerdo.
Etapa 2.2.2.1
Cancele o fator comum de .
Etapa 2.2.2.1.1
Cancele o fator comum.
Etapa 2.2.2.1.2
Divida por .
Etapa 3
Etapa 3.1
Substitua a variável por na expressão.
Etapa 3.2
Simplifique o resultado.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Aplique a regra do produto a .
Etapa 3.2.1.2
Eleve à potência de .
Etapa 3.2.1.3
Eleve à potência de .
Etapa 3.2.1.4
Cancele o fator comum de .
Etapa 3.2.1.4.1
Fatore de .
Etapa 3.2.1.4.2
Cancele o fator comum.
Etapa 3.2.1.4.3
Reescreva a expressão.
Etapa 3.2.1.5
Multiplique .
Etapa 3.2.1.5.1
Combine e .
Etapa 3.2.1.5.2
Multiplique por .
Etapa 3.2.1.6
Mova o número negativo para a frente da fração.
Etapa 3.2.2
Encontre o denominador comum.
Etapa 3.2.2.1
Multiplique por .
Etapa 3.2.2.2
Multiplique por .
Etapa 3.2.2.3
Escreva como uma fração com denominador .
Etapa 3.2.2.4
Multiplique por .
Etapa 3.2.2.5
Multiplique por .
Etapa 3.2.2.6
Reordene os fatores de .
Etapa 3.2.2.7
Multiplique por .
Etapa 3.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.4
Simplifique cada termo.
Etapa 3.2.4.1
Multiplique por .
Etapa 3.2.4.2
Multiplique por .
Etapa 3.2.5
Simplifique a expressão.
Etapa 3.2.5.1
Subtraia de .
Etapa 3.2.5.2
Some e .
Etapa 3.2.5.3
Mova o número negativo para a frente da fração.
Etapa 3.2.6
A resposta final é .
Etapa 4
A reta tangente horizontal na função é .
Etapa 5