Cálculo Exemplos

Encontre os Pontos Críticos x^2-32 raiz quadrada de x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Use para reescrever como .
Etapa 1.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.2.5
Combine e .
Etapa 1.1.2.6
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.2.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.1.2.7.1
Multiplique por .
Etapa 1.1.2.7.2
Subtraia de .
Etapa 1.1.2.8
Mova o número negativo para a frente da fração.
Etapa 1.1.2.9
Combine e .
Etapa 1.1.2.10
Combine e .
Etapa 1.1.2.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.1.2.12
Fatore de .
Etapa 1.1.2.13
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.2.13.1
Fatore de .
Etapa 1.1.2.13.2
Cancele o fator comum.
Etapa 1.1.2.13.3
Reescreva a expressão.
Etapa 1.1.2.14
Mova o número negativo para a frente da fração.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 2.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2.2
O MMC de um e qualquer expressão é a expressão.
Etapa 2.3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique cada termo em por .
Etapa 2.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.3.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.3.2.1.1.1
Mova .
Etapa 2.3.2.1.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.3.2.1.1.2.1
Eleve à potência de .
Etapa 2.3.2.1.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.2.1.1.3
Escreva como uma fração com um denominador comum.
Etapa 2.3.2.1.1.4
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.2.1.1.5
Some e .
Etapa 2.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.3.2.1.2.2
Cancele o fator comum.
Etapa 2.3.2.1.2.3
Reescreva a expressão.
Etapa 2.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.3.1
Multiplique por .
Etapa 2.4
Resolva a equação.
Toque para ver mais passagens...
Etapa 2.4.1
Some aos dois lados da equação.
Etapa 2.4.2
Eleve cada lado da equação à potência de para eliminar o expoente fracionário no lado esquerdo.
Etapa 2.4.3
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.3.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.4.3.1.1
Aplique a regra do produto a .
Etapa 2.4.3.1.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.4.3.1.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.4.3.1.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.3.1.2.2.1
Cancele o fator comum.
Etapa 2.4.3.1.2.2.2
Reescreva a expressão.
Etapa 2.4.3.1.2.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.3.1.2.3.1
Cancele o fator comum.
Etapa 2.4.3.1.2.3.2
Reescreva a expressão.
Etapa 2.4.3.1.3
Simplifique.
Etapa 2.4.3.1.4
Reordene os fatores em .
Etapa 2.4.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.4.4.1
Divida cada termo em por .
Etapa 2.4.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.4.2.1
Cancele o fator comum.
Etapa 2.4.4.2.2
Divida por .
Etapa 2.4.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.4.4.3.1
Use a potência da regra do quociente .
Etapa 2.4.4.3.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.4.4.3.2.1
Divida por .
Etapa 2.4.4.3.2.2
Reescreva como .
Etapa 2.4.4.3.2.3
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.4.4.3.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.4.3.3.1
Cancele o fator comum.
Etapa 2.4.4.3.3.2
Reescreva a expressão.
Etapa 2.4.4.3.4
Eleve à potência de .
Etapa 3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 3.1
Converta expressões com expoentes fracionários em radicais.
Toque para ver mais passagens...
Etapa 3.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.1.2
Qualquer número elevado a é a própria base.
Etapa 3.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.3
Resolva .
Toque para ver mais passagens...
Etapa 3.3.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 3.3.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 3.3.2.1
Use para reescrever como .
Etapa 3.3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.3.2.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 3.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.2.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 3.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 3.3.2.2.1.2
Simplifique.
Etapa 3.3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 3.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 3.5
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 4.1
Avalie em .
Toque para ver mais passagens...
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.2.1.1
Eleve à potência de .
Etapa 4.1.2.1.2
Reescreva como .
Etapa 4.1.2.1.3
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.1.2.1.4
Multiplique por .
Etapa 4.1.2.2
Subtraia de .
Etapa 4.2
Avalie em .
Toque para ver mais passagens...
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 4.2.2.1.2
Reescreva como .
Etapa 4.2.2.1.3
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.2.2.1.4
Multiplique por .
Etapa 4.2.2.2
Some e .
Etapa 4.3
Liste todos os pontos.
Etapa 5