Cálculo Exemplos

Encontre os Pontos Críticos 2x^3-24x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Some aos dois lados da equação.
Etapa 2.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.3.1
Divida cada termo em por .
Etapa 2.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.1.1
Cancele o fator comum.
Etapa 2.3.2.1.2
Divida por .
Etapa 2.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.3.1
Divida por .
Etapa 2.4
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.5
Simplifique .
Toque para ver mais passagens...
Etapa 2.5.1
Reescreva como .
Etapa 2.5.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.6
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 4.1
Avalie em .
Toque para ver mais passagens...
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 4.1.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 4.1.2.1.1.1.1
Eleve à potência de .
Etapa 4.1.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.2.1.1.2
Some e .
Etapa 4.1.2.1.2
Eleve à potência de .
Etapa 4.1.2.1.3
Multiplique por .
Etapa 4.1.2.2
Subtraia de .
Etapa 4.2
Avalie em .
Toque para ver mais passagens...
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Eleve à potência de .
Etapa 4.2.2.1.2
Multiplique por .
Etapa 4.2.2.1.3
Multiplique por .
Etapa 4.2.2.2
Some e .
Etapa 4.3
Liste todos os pontos.
Etapa 5