Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Use para reescrever como .
Etapa 1.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Substitua todas as ocorrências de por .
Etapa 1.1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.4
Combine e .
Etapa 1.1.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.6
Simplifique o numerador.
Etapa 1.1.6.1
Multiplique por .
Etapa 1.1.6.2
Subtraia de .
Etapa 1.1.7
Combine frações.
Etapa 1.1.7.1
Mova o número negativo para a frente da fração.
Etapa 1.1.7.2
Combine e .
Etapa 1.1.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.1.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.10
Some e .
Etapa 1.1.11
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.12
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.13
Simplifique os termos.
Etapa 1.1.13.1
Multiplique por .
Etapa 1.1.13.2
Combine e .
Etapa 1.1.13.3
Combine e .
Etapa 1.1.13.4
Fatore de .
Etapa 1.1.14
Cancele os fatores comuns.
Etapa 1.1.14.1
Fatore de .
Etapa 1.1.14.2
Cancele o fator comum.
Etapa 1.1.14.3
Reescreva a expressão.
Etapa 1.1.15
Mova o número negativo para a frente da fração.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Defina o numerador como igual a zero.
Etapa 3
Etapa 3.1
Converta expressões com expoentes fracionários em radicais.
Etapa 3.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.1.2
Qualquer número elevado a é a própria base.
Etapa 3.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.3
Resolva .
Etapa 3.3.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 3.3.2
Simplifique cada lado da equação.
Etapa 3.3.2.1
Use para reescrever como .
Etapa 3.3.2.2
Simplifique o lado esquerdo.
Etapa 3.3.2.2.1
Simplifique .
Etapa 3.3.2.2.1.1
Multiplique os expoentes em .
Etapa 3.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.2.2.1.1.2
Cancele o fator comum de .
Etapa 3.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 3.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 3.3.2.2.1.2
Simplifique.
Etapa 3.3.2.3
Simplifique o lado direito.
Etapa 3.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 3.3.3
Resolva .
Etapa 3.3.3.1
Subtraia dos dois lados da equação.
Etapa 3.3.3.2
Divida cada termo em por e simplifique.
Etapa 3.3.3.2.1
Divida cada termo em por .
Etapa 3.3.3.2.2
Simplifique o lado esquerdo.
Etapa 3.3.3.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.3.3.2.2.2
Divida por .
Etapa 3.3.3.2.3
Simplifique o lado direito.
Etapa 3.3.3.2.3.1
Divida por .
Etapa 3.3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.3.3.4
Simplifique .
Etapa 3.3.3.4.1
Reescreva como .
Etapa 3.3.3.4.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.3.3.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.3.3.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.3.3.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.3.3.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 3.5
Resolva .
Etapa 3.5.1
Subtraia dos dois lados da desigualdade.
Etapa 3.5.2
Divida cada termo em por e simplifique.
Etapa 3.5.2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 3.5.2.2
Simplifique o lado esquerdo.
Etapa 3.5.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.5.2.2.2
Divida por .
Etapa 3.5.2.3
Simplifique o lado direito.
Etapa 3.5.2.3.1
Divida por .
Etapa 3.5.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 3.5.4
Simplifique a equação.
Etapa 3.5.4.1
Simplifique o lado esquerdo.
Etapa 3.5.4.1.1
Elimine os termos abaixo do radical.
Etapa 3.5.4.2
Simplifique o lado direito.
Etapa 3.5.4.2.1
Simplifique .
Etapa 3.5.4.2.1.1
Reescreva como .
Etapa 3.5.4.2.1.2
Elimine os termos abaixo do radical.
Etapa 3.5.4.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 3.5.5
Escreva em partes.
Etapa 3.5.5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 3.5.5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 3.5.5.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 3.5.5.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 3.5.5.5
Escreva em partes.
Etapa 3.5.6
Encontre a intersecção de e .
Etapa 3.5.7
Divida cada termo em por e simplifique.
Etapa 3.5.7.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 3.5.7.2
Simplifique o lado esquerdo.
Etapa 3.5.7.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.5.7.2.2
Divida por .
Etapa 3.5.7.3
Simplifique o lado direito.
Etapa 3.5.7.3.1
Divida por .
Etapa 3.5.8
Encontre a união das soluções.
ou
ou
Etapa 3.6
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 4
Etapa 4.1
Avalie em .
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Etapa 4.1.2.1
Elevar a qualquer potência positiva produz .
Etapa 4.1.2.2
Multiplique por .
Etapa 4.1.2.3
Some e .
Etapa 4.1.2.4
Reescreva como .
Etapa 4.1.2.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.2
Avalie em .
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Etapa 4.2.2.1
Eleve à potência de .
Etapa 4.2.2.2
Multiplique por .
Etapa 4.2.2.3
Subtraia de .
Etapa 4.2.2.4
Reescreva como .
Etapa 4.2.2.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.3
Avalie em .
Etapa 4.3.1
Substitua por .
Etapa 4.3.2
Simplifique.
Etapa 4.3.2.1
Eleve à potência de .
Etapa 4.3.2.2
Multiplique por .
Etapa 4.3.2.3
Subtraia de .
Etapa 4.3.2.4
Reescreva como .
Etapa 4.3.2.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.4
Liste todos os pontos.
Etapa 5