Cálculo Exemplos

Encontre os Pontos Críticos f(x)=4x+1/x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Reescreva como .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.5
Reordene os termos.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Subtraia dos dois lados da equação.
Etapa 2.3
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 2.3.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.3.2
O MMC de um e qualquer expressão é a expressão.
Etapa 2.4
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.4.1
Multiplique cada termo em por .
Etapa 2.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.2.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.4.2.1.2
Cancele o fator comum.
Etapa 2.4.2.1.3
Reescreva a expressão.
Etapa 2.5
Resolva a equação.
Toque para ver mais passagens...
Etapa 2.5.1
Reescreva a equação como .
Etapa 2.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.1
Divida cada termo em por .
Etapa 2.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.2.1.1
Cancele o fator comum.
Etapa 2.5.2.2.1.2
Divida por .
Etapa 2.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.5.4
Simplifique .
Toque para ver mais passagens...
Etapa 2.5.4.1
Reescreva como .
Etapa 2.5.4.2
Qualquer raiz de é .
Etapa 2.5.4.3
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 2.5.4.3.1
Reescreva como .
Etapa 2.5.4.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.5.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.5.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.5.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.5.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 3.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.2
Resolva .
Toque para ver mais passagens...
Etapa 3.2.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1
Reescreva como .
Etapa 3.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.2.2.3
Mais ou menos é .
Etapa 4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 4.1
Avalie em .
Toque para ver mais passagens...
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.1.2.1.1.1
Fatore de .
Etapa 4.1.2.1.1.2
Cancele o fator comum.
Etapa 4.1.2.1.1.3
Reescreva a expressão.
Etapa 4.1.2.1.2
Multiplique o numerador pelo inverso do denominador.
Etapa 4.1.2.1.3
Multiplique por .
Etapa 4.1.2.2
Some e .
Etapa 4.2
Avalie em .
Toque para ver mais passagens...
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.1.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 4.2.2.1.1.2
Fatore de .
Etapa 4.2.2.1.1.3
Cancele o fator comum.
Etapa 4.2.2.1.1.4
Reescreva a expressão.
Etapa 4.2.2.1.2
Multiplique por .
Etapa 4.2.2.1.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.2.2.1.3.1
Reescreva como .
Etapa 4.2.2.1.3.2
Mova o número negativo para a frente da fração.
Etapa 4.2.2.1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 4.2.2.1.5
Multiplique .
Toque para ver mais passagens...
Etapa 4.2.2.1.5.1
Multiplique por .
Etapa 4.2.2.1.5.2
Multiplique por .
Etapa 4.2.2.2
Subtraia de .
Etapa 4.3
Avalie em .
Toque para ver mais passagens...
Etapa 4.3.1
Substitua por .
Etapa 4.3.2
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 4.4
Liste todos os pontos.
Etapa 5