Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 1.2
Resolva .
Etapa 1.2.1
Converta a desigualdade em uma equação.
Etapa 1.2.2
Fatore de .
Etapa 1.2.2.1
Fatore de .
Etapa 1.2.2.2
Eleve à potência de .
Etapa 1.2.2.3
Fatore de .
Etapa 1.2.2.4
Fatore de .
Etapa 1.2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 1.2.4
Defina como igual a .
Etapa 1.2.5
Defina como igual a e resolva para .
Etapa 1.2.5.1
Defina como igual a .
Etapa 1.2.5.2
Subtraia dos dois lados da equação.
Etapa 1.2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 1.2.7
Use cada raiz para criar intervalos de teste.
Etapa 1.2.8
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Etapa 1.2.8.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 1.2.8.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 1.2.8.1.2
Substitua por na desigualdade original.
Etapa 1.2.8.1.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 1.2.8.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 1.2.8.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 1.2.8.2.2
Substitua por na desigualdade original.
Etapa 1.2.8.2.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 1.2.8.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 1.2.8.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 1.2.8.3.2
Substitua por na desigualdade original.
Etapa 1.2.8.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 1.2.8.4
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Verdadeiro
Falso
Verdadeiro
Verdadeiro
Falso
Verdadeiro
Etapa 1.2.9
A solução consiste em todos os intervalos verdadeiros.
ou
ou
Etapa 1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 2
Como o domínio não consiste em números reais apenas, não é contínuo em relação a todos os números reais.
Não contínuo
Etapa 3