Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.6
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.7
Avalie os limites substituindo por todas as ocorrências de .
Etapa 1.1.2.7.1
Avalie o limite de substituindo por .
Etapa 1.1.2.7.2
Avalie o limite de substituindo por .
Etapa 1.1.2.7.3
Avalie o limite de substituindo por .
Etapa 1.1.2.8
Simplifique a resposta.
Etapa 1.1.2.8.1
Simplifique cada termo.
Etapa 1.1.2.8.1.1
Eleve à potência de .
Etapa 1.1.2.8.1.2
Eleve à potência de .
Etapa 1.1.2.8.1.3
Multiplique por .
Etapa 1.1.2.8.1.4
Eleve à potência de .
Etapa 1.1.2.8.1.5
Multiplique por .
Etapa 1.1.2.8.2
Some e .
Etapa 1.1.2.8.3
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.3.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.4
Avalie os limites substituindo por todas as ocorrências de .
Etapa 1.1.3.4.1
Avalie o limite de substituindo por .
Etapa 1.1.3.4.2
Avalie o limite de substituindo por .
Etapa 1.1.3.5
Simplifique a resposta.
Etapa 1.1.3.5.1
Simplifique cada termo.
Etapa 1.1.3.5.1.1
Eleve à potência de .
Etapa 1.1.3.5.1.2
Multiplique por .
Etapa 1.1.3.5.2
Subtraia de .
Etapa 1.1.3.5.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.6
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4
Avalie .
Etapa 1.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4.3
Multiplique por .
Etapa 1.3.5
Avalie .
Etapa 1.3.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.5.3
Multiplique por .
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8
Avalie .
Etapa 1.3.8.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.8.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8.3
Multiplique por .
Etapa 2
Etapa 2.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.6
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.7
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.8
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.9
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.10
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3
Etapa 3.1
Avalie o limite de substituindo por .
Etapa 3.2
Avalie o limite de substituindo por .
Etapa 3.3
Avalie o limite de substituindo por .
Etapa 3.4
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Cancele o fator comum de e .
Etapa 4.1.1
Fatore de .
Etapa 4.1.2
Fatore de .
Etapa 4.1.3
Fatore de .
Etapa 4.1.4
Reescreva como .
Etapa 4.1.5
Fatore de .
Etapa 4.1.6
Fatore de .
Etapa 4.1.7
Fatore de .
Etapa 4.1.8
Fatore de .
Etapa 4.1.9
Fatore de .
Etapa 4.1.10
Cancele os fatores comuns.
Etapa 4.1.10.1
Fatore de .
Etapa 4.1.10.2
Cancele o fator comum.
Etapa 4.1.10.3
Reescreva a expressão.
Etapa 4.2
Simplifique o numerador.
Etapa 4.2.1
Multiplique por somando os expoentes.
Etapa 4.2.1.1
Multiplique por .
Etapa 4.2.1.1.1
Eleve à potência de .
Etapa 4.2.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.2.1.2
Some e .
Etapa 4.2.2
Eleve à potência de .
Etapa 4.2.3
Multiplique por .
Etapa 4.2.4
Multiplique por .
Etapa 4.2.5
Some e .
Etapa 4.2.6
Subtraia de .
Etapa 4.3
Simplifique o denominador.
Etapa 4.3.1
Multiplique por .
Etapa 4.3.2
Some e .
Etapa 4.4
Multiplique por .
Etapa 4.5
Divida por .