Insira um problema...
Cálculo Exemplos
Etapa 1
Reescreva como .
Etapa 2
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie o limite do numerador.
Etapa 2.1.2.1
Avalie o limite.
Etapa 2.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.2.1.2
Mova o limite para baixo do sinal do radical.
Etapa 2.1.2.1.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.2.2
Avalie o limite de substituindo por .
Etapa 2.1.2.3
Simplifique a resposta.
Etapa 2.1.2.3.1
Simplifique cada termo.
Etapa 2.1.2.3.1.1
Reescreva como .
Etapa 2.1.2.3.1.2
Elimine os termos abaixo do radical, presumindo que sejam números reais.
Etapa 2.1.2.3.1.3
Multiplique por .
Etapa 2.1.2.3.2
Subtraia de .
Etapa 2.1.3
Avalie o limite do denominador.
Etapa 2.1.3.1
Avalie o limite.
Etapa 2.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.2
Avalie o limite de substituindo por .
Etapa 2.1.3.3
Simplifique a resposta.
Etapa 2.1.3.3.1
Multiplique por .
Etapa 2.1.3.3.2
Subtraia de .
Etapa 2.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Avalie .
Etapa 2.3.3.1
Use para reescrever como .
Etapa 2.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.3.3.4
Combine e .
Etapa 2.3.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.3.6
Simplifique o numerador.
Etapa 2.3.3.6.1
Multiplique por .
Etapa 2.3.3.6.2
Subtraia de .
Etapa 2.3.3.7
Mova o número negativo para a frente da fração.
Etapa 2.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5
Simplifique.
Etapa 2.3.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.3.5.2
Combine os termos.
Etapa 2.3.5.2.1
Multiplique por .
Etapa 2.3.5.2.2
Some e .
Etapa 2.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.9
Some e .
Etapa 2.4
Multiplique o numerador pelo inverso do denominador.
Etapa 2.5
Multiplique por .
Etapa 3
Etapa 3.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 3.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.4
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 4
Avalie o limite de substituindo por .
Etapa 5
Etapa 5.1
Combine.
Etapa 5.2
Multiplique por .
Etapa 5.3
Simplifique o denominador.
Etapa 5.3.1
Reescreva como .
Etapa 5.3.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.3.3
Cancele o fator comum de .
Etapa 5.3.3.1
Cancele o fator comum.
Etapa 5.3.3.2
Reescreva a expressão.
Etapa 5.3.4
Eleve à potência de .
Etapa 5.4
Multiplique por .
Etapa 6
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: