Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Diferencie usando a regra da constante.
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Some e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Diferencie usando a regra da constante.
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Some e .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.2
Avalie .
Etapa 4.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.2.3
Multiplique por .
Etapa 4.1.3
Avalie .
Etapa 4.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.3.3
Multiplique por .
Etapa 4.1.4
Diferencie usando a regra da constante.
Etapa 4.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.4.2
Some e .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Some aos dois lados da equação.
Etapa 5.3
Divida cada termo em por e simplifique.
Etapa 5.3.1
Divida cada termo em por .
Etapa 5.3.2
Simplifique o lado esquerdo.
Etapa 5.3.2.1
Cancele o fator comum de .
Etapa 5.3.2.1.1
Cancele o fator comum.
Etapa 5.3.2.1.2
Divida por .
Etapa 5.3.3
Simplifique o lado direito.
Etapa 5.3.3.1
Cancele o fator comum de e .
Etapa 5.3.3.1.1
Fatore de .
Etapa 5.3.3.1.2
Cancele os fatores comuns.
Etapa 5.3.3.1.2.1
Fatore de .
Etapa 5.3.3.1.2.2
Cancele o fator comum.
Etapa 5.3.3.1.2.3
Reescreva a expressão.
Etapa 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 5.5
Simplifique .
Etapa 5.5.1
Reescreva como .
Etapa 5.5.2
Qualquer raiz de é .
Etapa 5.5.3
Simplifique o denominador.
Etapa 5.5.3.1
Reescreva como .
Etapa 5.5.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 5.6
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Fatore de .
Etapa 9.2
Cancele o fator comum.
Etapa 9.3
Reescreva a expressão.
Etapa 10
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 11
Etapa 11.1
Substitua a variável por na expressão.
Etapa 11.2
Simplifique o resultado.
Etapa 11.2.1
Simplifique cada termo.
Etapa 11.2.1.1
Aplique a regra do produto a .
Etapa 11.2.1.2
Um elevado a qualquer potência é um.
Etapa 11.2.1.3
Eleve à potência de .
Etapa 11.2.1.4
Cancele o fator comum de .
Etapa 11.2.1.4.1
Cancele o fator comum.
Etapa 11.2.1.4.2
Reescreva a expressão.
Etapa 11.2.1.5
Cancele o fator comum de .
Etapa 11.2.1.5.1
Fatore de .
Etapa 11.2.1.5.2
Cancele o fator comum.
Etapa 11.2.1.5.3
Reescreva a expressão.
Etapa 11.2.2
Simplifique somando e subtraindo.
Etapa 11.2.2.1
Subtraia de .
Etapa 11.2.2.2
Some e .
Etapa 11.2.3
A resposta final é .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Etapa 13.1
Cancele o fator comum de .
Etapa 13.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 13.1.2
Fatore de .
Etapa 13.1.3
Cancele o fator comum.
Etapa 13.1.4
Reescreva a expressão.
Etapa 13.2
Multiplique por .
Etapa 14
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 15
Etapa 15.1
Substitua a variável por na expressão.
Etapa 15.2
Simplifique o resultado.
Etapa 15.2.1
Simplifique cada termo.
Etapa 15.2.1.1
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 15.2.1.1.1
Aplique a regra do produto a .
Etapa 15.2.1.1.2
Aplique a regra do produto a .
Etapa 15.2.1.2
Eleve à potência de .
Etapa 15.2.1.3
Um elevado a qualquer potência é um.
Etapa 15.2.1.4
Eleve à potência de .
Etapa 15.2.1.5
Cancele o fator comum de .
Etapa 15.2.1.5.1
Mova o negativo de maior ordem em para o numerador.
Etapa 15.2.1.5.2
Cancele o fator comum.
Etapa 15.2.1.5.3
Reescreva a expressão.
Etapa 15.2.1.6
Cancele o fator comum de .
Etapa 15.2.1.6.1
Mova o negativo de maior ordem em para o numerador.
Etapa 15.2.1.6.2
Fatore de .
Etapa 15.2.1.6.3
Cancele o fator comum.
Etapa 15.2.1.6.4
Reescreva a expressão.
Etapa 15.2.1.7
Multiplique por .
Etapa 15.2.2
Simplifique somando os números.
Etapa 15.2.2.1
Some e .
Etapa 15.2.2.2
Some e .
Etapa 15.2.3
A resposta final é .
Etapa 16
Esses são os extremos locais para .
é um mínimo local
é um máximo local
Etapa 17