Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Simplifique.
Etapa 2.4.1
Reordene os termos.
Etapa 2.4.2
Simplifique cada termo.
Etapa 2.4.2.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.4.2.2
Combine e .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Reescreva como .
Etapa 3.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3.3
Substitua todas as ocorrências de por .
Etapa 3.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.5
Multiplique os expoentes em .
Etapa 3.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.2.5.2
Multiplique por .
Etapa 3.2.6
Multiplique por .
Etapa 3.2.7
Multiplique por somando os expoentes.
Etapa 3.2.7.1
Mova .
Etapa 3.2.7.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.7.3
Subtraia de .
Etapa 3.2.8
Multiplique por .
Etapa 3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4
Simplifique.
Etapa 3.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3.4.2
Combine os termos.
Etapa 3.4.2.1
Combine e .
Etapa 3.4.2.2
Mova o número negativo para a frente da fração.
Etapa 3.4.2.3
Some e .
Etapa 4
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 5
Visto que não há um valor de que torne a primeira derivada igual a , não há extremos locais.
Nenhum extremo local
Etapa 6
Nenhum extremo local
Etapa 7