Insira um problema...
Cálculo Exemplos
Etapa 1
É possível determinar a função avaliando a integral indefinida da derivada .
Etapa 2
Como é constante com relação a , mova para fora da integral.
Etapa 3
Etapa 3.1
Deixe . Encontre .
Etapa 3.1.1
Diferencie .
Etapa 3.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.1.4
Multiplique por .
Etapa 3.2
Reescreva o problema usando e .
Etapa 4
Etapa 4.1
Multiplique pelo inverso da fração para dividir por .
Etapa 4.2
Multiplique por .
Etapa 4.3
Mova para a esquerda de .
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Etapa 6.1
Combine e .
Etapa 6.2
Cancele o fator comum de .
Etapa 6.2.1
Cancele o fator comum.
Etapa 6.2.2
Reescreva a expressão.
Etapa 6.3
Multiplique por .
Etapa 7
Como a derivada de é , a integral de é .
Etapa 8
Substitua todas as ocorrências de por .
Etapa 9
A função quando originada da integral da derivada da função. Isso é válido pelo teorema fundamental do cálculo.