Insira um problema...
Cálculo Exemplos
Etapa 1
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 2
Estabeleça a integral para resolver.
Etapa 3
Divida a integral única em várias integrais.
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 6
Etapa 6.1
Combine e .
Etapa 6.2
Mova para o denominador usando a regra do expoente negativo .
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 9
Etapa 9.1
Combine e .
Etapa 9.2
Mova para o denominador usando a regra do expoente negativo .
Etapa 10
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 11
Aplique a regra da constante.
Etapa 12
Simplifique.
Etapa 13
A resposta é a primitiva da função .