Cálculo Exemplos

Avalie o Limite limite à medida que h aproxima 0 de ((8+h)^-1-8^-1)/h
Etapa 1
Avalie o limite.
Toque para ver mais passagens...
Etapa 1.1
Simplifique o argumento do limite.
Toque para ver mais passagens...
Etapa 1.1.1
Converta os expoentes negativos em frações.
Toque para ver mais passagens...
Etapa 1.1.1.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.1.2
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.2
Combine os termos.
Toque para ver mais passagens...
Etapa 1.1.2.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 1.1.2.3.1
Multiplique por .
Etapa 1.1.2.3.2
Multiplique por .
Etapa 1.1.2.3.3
Reordene os fatores de .
Etapa 1.1.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.2
Simplifique o argumento do limite.
Toque para ver mais passagens...
Etapa 1.2.1
Multiplique o numerador pelo inverso do denominador.
Etapa 1.2.2
Multiplique por .
Etapa 1.3
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2
Aplique a regra de l'Hôpital.
Toque para ver mais passagens...
Etapa 2.1
Avalie o limite do numerador e o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 2.1.2
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 2.1.2.1
Avalie o limite de substituindo por .
Etapa 2.1.2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.2.1
Some e .
Etapa 2.1.2.2.2
Multiplique por .
Etapa 2.1.2.3
Subtraia de .
Etapa 2.1.3
Avalie o limite do denominador.
Toque para ver mais passagens...
Etapa 2.1.3.1
Divida o limite usando a regra do produto dos limites no limite em que se aproxima de .
Etapa 2.1.3.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.1.3.3
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.1.3.4
Avalie os limites substituindo por todas as ocorrências de .
Toque para ver mais passagens...
Etapa 2.1.3.4.1
Avalie o limite de substituindo por .
Etapa 2.1.3.4.2
Avalie o limite de substituindo por .
Etapa 2.1.3.5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 2.1.3.5.1
Some e .
Etapa 2.1.3.5.2
Multiplique por .
Etapa 2.1.3.5.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.3.6
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 2.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 2.3
Encontre a derivada do numerador e do denominador.
Toque para ver mais passagens...
Etapa 2.3.1
Diferencie o numerador e o denominador.
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Avalie .
Toque para ver mais passagens...
Etapa 2.3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.4.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4.5
Some e .
Etapa 2.3.4.6
Multiplique por .
Etapa 2.3.5
Subtraia de .
Etapa 2.3.6
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.8
Multiplique por .
Etapa 2.3.9
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.11
Some e .
Etapa 2.3.12
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.13
Multiplique por .
Etapa 2.3.14
Some e .
Etapa 2.3.15
Reordene os termos.
Etapa 3
Avalie o limite.
Toque para ver mais passagens...
Etapa 3.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 3.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 3.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 3.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 4
Avalie o limite de substituindo por .
Etapa 5
Simplifique a resposta.
Toque para ver mais passagens...
Etapa 5.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 5.1.1
Multiplique por .
Etapa 5.1.2
Some e .
Etapa 5.2
Mova o número negativo para a frente da fração.
Etapa 5.3
Multiplique .
Toque para ver mais passagens...
Etapa 5.3.1
Multiplique por .
Etapa 5.3.2
Multiplique por .
Etapa 6
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: