Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Mova o limite dentro da função trigonométrica, pois a tangente é contínua.
Etapa 1.1.2.1.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.1.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Combine os termos opostos em .
Etapa 1.1.2.3.1
Some e .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite de substituindo por .
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Etapa 1.3.3.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.3.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.1.2
A derivada de em relação a é .
Etapa 1.3.3.1.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.5
Some e .
Etapa 1.3.3.6
Multiplique por .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Simplifique.
Etapa 1.3.5.1
Some e .
Etapa 1.3.5.2
Reescreva em termos de senos e cossenos.
Etapa 1.3.5.3
Aplique a regra do produto a .
Etapa 1.3.5.4
Um elevado a qualquer potência é um.
Etapa 1.3.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Multiplique por .
Etapa 2
Etapa 2.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.4
Mova o limite dentro da função trigonométrica, pois o cosseno é contínuo.
Etapa 2.5
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Reescreva como .
Etapa 4.2
Reescreva como .
Etapa 4.3
Converta de em .
Etapa 4.4
Some e .