Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Reescreva em termos de senos e cossenos.
Etapa 1.2
Combine e .
Etapa 2
Converta de em .
Etapa 3
Etapa 3.1
Avalie o limite do numerador e o limite do denominador.
Etapa 3.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 3.1.2
Avalie o limite do numerador.
Etapa 3.1.2.1
Mova o limite dentro da função trigonométrica, pois a tangente é contínua.
Etapa 3.1.2.2
Avalie o limite de substituindo por .
Etapa 3.1.2.3
O valor exato de é .
Etapa 3.1.3
Avalie o limite de substituindo por .
Etapa 3.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 3.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 3.3
Encontre a derivada do numerador e do denominador.
Etapa 3.3.1
Diferencie o numerador e o denominador.
Etapa 3.3.2
A derivada de em relação a é .
Etapa 3.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4
Divida por .
Etapa 4
Etapa 4.1
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 4.2
Mova o limite dentro da função trigonométrica, pois a secante é contínua.
Etapa 5
Avalie o limite de substituindo por .
Etapa 6
Etapa 6.1
O valor exato de é .
Etapa 6.2
Um elevado a qualquer potência é um.