Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.4
Multiplique por .
Etapa 1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.6
Simplifique a expressão.
Etapa 1.2.6.1
Some e .
Etapa 1.2.6.2
Mova para a esquerda de .
Etapa 1.2.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.10
Multiplique por .
Etapa 1.2.11
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.12
Simplifique a expressão.
Etapa 1.2.12.1
Some e .
Etapa 1.2.12.2
Multiplique por .
Etapa 1.3
Simplifique.
Etapa 1.3.1
Aplique a propriedade distributiva.
Etapa 1.3.2
Aplique a propriedade distributiva.
Etapa 1.3.3
Simplifique o numerador.
Etapa 1.3.3.1
Combine os termos opostos em .
Etapa 1.3.3.1.1
Reorganize os fatores nos termos e .
Etapa 1.3.3.1.2
Subtraia de .
Etapa 1.3.3.1.3
Some e .
Etapa 1.3.3.2
Simplifique cada termo.
Etapa 1.3.3.2.1
Multiplique por .
Etapa 1.3.3.2.2
Multiplique por .
Etapa 1.3.3.3
Some e .
Etapa 2
Etapa 2.1
Diferencie usando a regra do múltiplo constante.
Etapa 2.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2
Aplique regras básicas de expoentes.
Etapa 2.1.2.1
Reescreva como .
Etapa 2.1.2.2
Multiplique os expoentes em .
Etapa 2.1.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.2.2
Multiplique por .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Diferencie.
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique por .
Etapa 2.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.7
Simplifique a expressão.
Etapa 2.3.7.1
Some e .
Etapa 2.3.7.2
Multiplique por .
Etapa 2.4
Simplifique.
Etapa 2.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.4.2
Combine os termos.
Etapa 2.4.2.1
Combine e .
Etapa 2.4.2.2
Mova o número negativo para a frente da fração.
Etapa 3
Etapa 3.1
Diferencie usando a regra do múltiplo constante.
Etapa 3.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.1.2
Aplique regras básicas de expoentes.
Etapa 3.1.2.1
Reescreva como .
Etapa 3.1.2.2
Multiplique os expoentes em .
Etapa 3.1.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.1.2.2.2
Multiplique por .
Etapa 3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Substitua todas as ocorrências de por .
Etapa 3.3
Diferencie.
Etapa 3.3.1
Multiplique por .
Etapa 3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.5
Multiplique por .
Etapa 3.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.7
Simplifique a expressão.
Etapa 3.3.7.1
Some e .
Etapa 3.3.7.2
Multiplique por .
Etapa 3.4
Simplifique.
Etapa 3.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3.4.2
Combine e .
Etapa 4
Etapa 4.1
Diferencie usando a regra do múltiplo constante.
Etapa 4.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.2
Aplique regras básicas de expoentes.
Etapa 4.1.2.1
Reescreva como .
Etapa 4.1.2.2
Multiplique os expoentes em .
Etapa 4.1.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.1.2.2.2
Multiplique por .
Etapa 4.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3
Substitua todas as ocorrências de por .
Etapa 4.3
Diferencie.
Etapa 4.3.1
Multiplique por .
Etapa 4.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.5
Multiplique por .
Etapa 4.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.7
Simplifique a expressão.
Etapa 4.3.7.1
Some e .
Etapa 4.3.7.2
Multiplique por .
Etapa 4.4
Simplifique.
Etapa 4.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.4.2
Combine os termos.
Etapa 4.4.2.1
Combine e .
Etapa 4.4.2.2
Mova o número negativo para a frente da fração.