Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Etapa 1.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 1.4
Como não tem fatores além de e .
é um número primo
Etapa 1.5
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 1.6
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 1.7
O fator de é o próprio .
ocorre vez.
Etapa 1.8
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.9
O MMC de é a parte numérica multiplicada pela parte variável.
Etapa 2
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.2.2
Cancele o fator comum de .
Etapa 2.2.2.1
Cancele o fator comum.
Etapa 2.2.2.2
Reescreva a expressão.
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Simplifique cada termo.
Etapa 2.3.1.1
Multiplique por .
Etapa 2.3.1.2
Cancele o fator comum de .
Etapa 2.3.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.3.1.2.2
Fatore de .
Etapa 2.3.1.2.3
Cancele o fator comum.
Etapa 2.3.1.2.4
Reescreva a expressão.
Etapa 2.3.1.3
Multiplique por .
Etapa 3
Etapa 3.1
Subtraia dos dois lados da equação.
Etapa 3.2
Some aos dois lados da equação.
Etapa 3.3
Use a fórmula quadrática para encontrar as soluções.
Etapa 3.4
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 3.5
Simplifique.
Etapa 3.5.1
Simplifique o numerador.
Etapa 3.5.1.1
Eleve à potência de .
Etapa 3.5.1.2
Multiplique .
Etapa 3.5.1.2.1
Multiplique por .
Etapa 3.5.1.2.2
Multiplique por .
Etapa 3.5.1.3
Subtraia de .
Etapa 3.5.1.4
Reescreva como .
Etapa 3.5.1.5
Reescreva como .
Etapa 3.5.1.6
Reescreva como .
Etapa 3.5.1.7
Reescreva como .
Etapa 3.5.1.8
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.5.1.9
Mova para a esquerda de .
Etapa 3.5.2
Multiplique por .
Etapa 3.5.3
Simplifique .
Etapa 3.6
A resposta final é a combinação das duas soluções.
Etapa 4