Cálculo Exemplos

Ermittle dt/ds s=1/3t^3-5t^2+16t+8
Etapa 1
Diferencie os dois lados da equação.
Etapa 2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3
Diferencie o lado direito da equação.
Toque para ver mais passagens...
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Toque para ver mais passagens...
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 3.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.2.3
Substitua todas as ocorrências de por .
Etapa 3.2.3
Reescreva como .
Etapa 3.2.4
Combine e .
Etapa 3.2.5
Combine e .
Etapa 3.2.6
Combine e .
Etapa 3.2.7
Mova para a esquerda de .
Etapa 3.2.8
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.8.1
Cancele o fator comum.
Etapa 3.2.8.2
Divida por .
Etapa 3.3
Avalie .
Toque para ver mais passagens...
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 3.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.2.3
Substitua todas as ocorrências de por .
Etapa 3.3.3
Reescreva como .
Etapa 3.3.4
Multiplique por .
Etapa 3.4
Avalie .
Toque para ver mais passagens...
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Reescreva como .
Etapa 3.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 3.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5.2
Some e .
Etapa 4
Reformule a equação definindo o lado esquerdo igual ao lado direito.
Etapa 5
Resolva .
Toque para ver mais passagens...
Etapa 5.1
Reescreva a equação como .
Etapa 5.2
Fatore de .
Toque para ver mais passagens...
Etapa 5.2.1
Fatore de .
Etapa 5.2.2
Fatore de .
Etapa 5.2.3
Fatore de .
Etapa 5.2.4
Fatore de .
Etapa 5.2.5
Fatore de .
Etapa 5.3
Fatore.
Toque para ver mais passagens...
Etapa 5.3.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 5.3.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 5.3.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 5.3.2
Remova os parênteses desnecessários.
Etapa 5.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.4.1
Divida cada termo em por .
Etapa 5.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.2.1.1
Cancele o fator comum.
Etapa 5.4.2.1.2
Reescreva a expressão.
Etapa 5.4.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.4.2.2.1
Cancele o fator comum.
Etapa 5.4.2.2.2
Divida por .
Etapa 6
Substitua por .