Cálculo Exemplos

Encontre a Integral (2v^2+6v+5)/((v+2)(v+1)^2)
Etapa 1
Escreva a fração usando a decomposição da fração parcial.
Toque para ver mais passagens...
Etapa 1.1
Decomponha a fração e multiplique pelo denominador comum.
Toque para ver mais passagens...
Etapa 1.1.1
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 1.1.4
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 1.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.5.1
Cancele o fator comum.
Etapa 1.1.5.2
Reescreva a expressão.
Etapa 1.1.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.6.1
Cancele o fator comum.
Etapa 1.1.6.2
Divida por .
Etapa 1.1.7
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.7.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.7.1.1
Cancele o fator comum.
Etapa 1.1.7.1.2
Divida por .
Etapa 1.1.7.2
Reescreva como .
Etapa 1.1.7.3
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.7.3.1
Aplique a propriedade distributiva.
Etapa 1.1.7.3.2
Aplique a propriedade distributiva.
Etapa 1.1.7.3.3
Aplique a propriedade distributiva.
Etapa 1.1.7.4
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.7.4.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.7.4.1.1
Multiplique por .
Etapa 1.1.7.4.1.2
Multiplique por .
Etapa 1.1.7.4.1.3
Multiplique por .
Etapa 1.1.7.4.1.4
Multiplique por .
Etapa 1.1.7.4.2
Some e .
Etapa 1.1.7.5
Aplique a propriedade distributiva.
Etapa 1.1.7.6
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.7.6.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.7.6.2
Multiplique por .
Etapa 1.1.7.7
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.7.7.1
Cancele o fator comum.
Etapa 1.1.7.7.2
Divida por .
Etapa 1.1.7.8
Aplique a propriedade distributiva.
Etapa 1.1.7.9
Mova para a esquerda de .
Etapa 1.1.7.10
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.1.7.10.1
Fatore de .
Etapa 1.1.7.10.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.7.10.2.1
Multiplique por .
Etapa 1.1.7.10.2.2
Cancele o fator comum.
Etapa 1.1.7.10.2.3
Reescreva a expressão.
Etapa 1.1.7.10.2.4
Divida por .
Etapa 1.1.7.11
Aplique a propriedade distributiva.
Etapa 1.1.7.12
Mova para a esquerda de .
Etapa 1.1.7.13
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.7.13.1
Aplique a propriedade distributiva.
Etapa 1.1.7.13.2
Aplique a propriedade distributiva.
Etapa 1.1.7.13.3
Aplique a propriedade distributiva.
Etapa 1.1.7.14
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.7.14.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.7.14.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.7.14.1.1.1
Mova .
Etapa 1.1.7.14.1.1.2
Multiplique por .
Etapa 1.1.7.14.1.2
Multiplique por .
Etapa 1.1.7.14.1.3
Multiplique por .
Etapa 1.1.7.14.2
Some e .
Etapa 1.1.8
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.8.1
Mova .
Etapa 1.1.8.2
Reordene e .
Etapa 1.1.8.3
Mova .
Etapa 1.1.8.4
Mova .
Etapa 1.1.8.5
Mova .
Etapa 1.1.8.6
Mova .
Etapa 1.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Toque para ver mais passagens...
Etapa 1.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.3
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 1.2.4
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 1.3
Resolva o sistema de equações.
Toque para ver mais passagens...
Etapa 1.3.1
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.1.1
Reescreva a equação como .
Etapa 1.3.1.2
Subtraia dos dois lados da equação.
Etapa 1.3.2
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.2.1
Substitua todas as ocorrências de em por .
Etapa 1.3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.2.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.2.2.1.1.2
Multiplique por .
Etapa 1.3.2.2.1.1.3
Multiplique por .
Etapa 1.3.2.2.1.2
Some e .
Etapa 1.3.2.3
Substitua todas as ocorrências de em por .
Etapa 1.3.2.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.2.4.1
Some e .
Etapa 1.3.3
Reordene e .
Etapa 1.3.4
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.4.1
Reescreva a equação como .
Etapa 1.3.4.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.4.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.4.2.2
Subtraia dos dois lados da equação.
Etapa 1.3.4.2.3
Subtraia de .
Etapa 1.3.5
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.5.1
Substitua todas as ocorrências de em por .
Etapa 1.3.5.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.5.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.5.2.1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.5.2.1.1.1
Aplique a propriedade distributiva.
Etapa 1.3.5.2.1.1.2
Multiplique por .
Etapa 1.3.5.2.1.1.3
Multiplique por .
Etapa 1.3.5.2.1.2
Some e .
Etapa 1.3.5.3
Substitua todas as ocorrências de em por .
Etapa 1.3.5.4
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.5.4.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.5.4.1.1
Remova os parênteses.
Etapa 1.3.5.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.5.4.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.5.4.2.1.1
Some e .
Etapa 1.3.5.4.2.1.2
Subtraia de .
Etapa 1.3.6
Resolva em .
Toque para ver mais passagens...
Etapa 1.3.6.1
Reescreva a equação como .
Etapa 1.3.6.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.3.6.2.1
Subtraia dos dois lados da equação.
Etapa 1.3.6.2.2
Subtraia de .
Etapa 1.3.6.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.6.3.1
Divida cada termo em por .
Etapa 1.3.6.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.6.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.3.6.3.2.2
Divida por .
Etapa 1.3.6.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.6.3.3.1
Divida por .
Etapa 1.3.7
Substitua todas as ocorrências de por em cada equação.
Toque para ver mais passagens...
Etapa 1.3.7.1
Substitua todas as ocorrências de em por .
Etapa 1.3.7.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.7.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.7.2.1.1
Multiplique por .
Etapa 1.3.7.2.1.2
Subtraia de .
Etapa 1.3.7.3
Substitua todas as ocorrências de em por .
Etapa 1.3.7.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.7.4.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.3.7.4.1.1
Multiplique por .
Etapa 1.3.7.4.1.2
Subtraia de .
Etapa 1.3.8
Liste todas as soluções.
Etapa 1.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para , e .
Etapa 1.5
Remova o zero da expressão.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 3.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 3.1.1
Diferencie .
Etapa 3.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.1.5
Some e .
Etapa 3.2
Reescreva o problema usando e .
Etapa 4
A integral de com relação a é .
Etapa 5
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 5.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 5.1.1
Diferencie .
Etapa 5.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 5.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 5.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 5.1.5
Some e .
Etapa 5.2
Reescreva o problema usando e .
Etapa 6
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 6.1
Mova para fora do denominador, elevando-o à potência.
Etapa 6.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 6.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 6.2.2
Multiplique por .
Etapa 7
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 8
Deixe . Depois, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 8.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 8.1.1
Diferencie .
Etapa 8.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.5
Some e .
Etapa 8.2
Reescreva o problema usando e .
Etapa 9
A integral de com relação a é .
Etapa 10
Simplifique.
Toque para ver mais passagens...
Etapa 10.1
Simplifique.
Etapa 10.2
Simplifique.
Toque para ver mais passagens...
Etapa 10.2.1
Use a propriedade dos logaritmos do produto, .
Etapa 10.2.2
Para multiplicar valores absolutos, multiplique os termos dentro de cada um deles.
Etapa 11
Substitua novamente para cada variável de substituição de integração.
Toque para ver mais passagens...
Etapa 11.1
Substitua todas as ocorrências de por .
Etapa 11.2
Substitua todas as ocorrências de por .
Etapa 11.3
Substitua todas as ocorrências de por .