Cálculo Exemplos

Encontre a Integral (x^3-2x^2-x)/(x^2)
Etapa 1
Simplifique.
Toque para ver mais passagens...
Etapa 1.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.1.1
Fatore de .
Etapa 1.1.2
Fatore de .
Etapa 1.1.3
Fatore de .
Etapa 1.1.4
Fatore de .
Etapa 1.1.5
Fatore de .
Etapa 1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Cancele o fator comum.
Etapa 1.2.3
Reescreva a expressão.
Etapa 2
Divida por .
Toque para ver mais passagens...
Etapa 2.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+--
Etapa 2.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+--
Etapa 2.3
Multiplique o novo termo do quociente pelo divisor.
+--
++
Etapa 2.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+--
--
Etapa 2.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+--
--
-
Etapa 2.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+--
--
--
Etapa 2.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
-
+--
--
--
Etapa 2.8
Multiplique o novo termo do quociente pelo divisor.
-
+--
--
--
-+
Etapa 2.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
-
+--
--
--
+-
Etapa 2.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
-
+--
--
--
+-
-
Etapa 2.11
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 3
Divida a integral única em várias integrais.
Etapa 4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5
Aplique a regra da constante.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
A integral de com relação a é .
Etapa 8
Simplifique.