Insira um problema...
Cálculo Exemplos
Etapa 1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4
Multiplique por .
Etapa 2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.7
Multiplique por .
Etapa 2.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.9
Some e .
Etapa 2.10
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.11
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.12
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.13
Simplifique a expressão.
Etapa 2.13.1
Some e .
Etapa 2.13.2
Multiplique por .
Etapa 3
Etapa 3.1
Aplique a propriedade distributiva.
Etapa 3.2
Simplifique o numerador.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Expanda usando o método FOIL.
Etapa 3.2.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.1.1.2
Aplique a propriedade distributiva.
Etapa 3.2.1.1.3
Aplique a propriedade distributiva.
Etapa 3.2.1.2
Simplifique e combine termos semelhantes.
Etapa 3.2.1.2.1
Simplifique cada termo.
Etapa 3.2.1.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.2.1.2
Multiplique por somando os expoentes.
Etapa 3.2.1.2.1.2.1
Mova .
Etapa 3.2.1.2.1.2.2
Multiplique por .
Etapa 3.2.1.2.1.3
Mova para a esquerda de .
Etapa 3.2.1.2.1.4
Multiplique por .
Etapa 3.2.1.2.1.5
Multiplique por .
Etapa 3.2.1.2.2
Subtraia de .
Etapa 3.2.1.3
Multiplique .
Etapa 3.2.1.3.1
Multiplique por .
Etapa 3.2.1.3.2
Multiplique por .
Etapa 3.2.1.4
Multiplique por .
Etapa 3.2.1.5
Multiplique por .
Etapa 3.2.2
Some e .
Etapa 3.2.3
Some e .
Etapa 3.2.4
Some e .
Etapa 3.3
Fatore por agrupamento.
Etapa 3.3.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 3.3.1.1
Fatore de .
Etapa 3.3.1.2
Reescreva como mais
Etapa 3.3.1.3
Aplique a propriedade distributiva.
Etapa 3.3.2
Fatore o máximo divisor comum de cada grupo.
Etapa 3.3.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 3.3.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 3.3.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3.4
Fatore de .
Etapa 3.5
Reescreva como .
Etapa 3.6
Fatore de .
Etapa 3.7
Reescreva como .
Etapa 3.8
Mova o número negativo para a frente da fração.