Insira um problema...
Cálculo Exemplos
Etapa 1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.5
Multiplique por .
Etapa 2.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.7
Some e .
Etapa 2.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.11
Simplifique a expressão.
Etapa 2.11.1
Some e .
Etapa 2.11.2
Multiplique por .
Etapa 3
Etapa 3.1
Aplique a propriedade distributiva.
Etapa 3.2
Simplifique o numerador.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Expanda usando o método FOIL.
Etapa 3.2.1.1.1
Aplique a propriedade distributiva.
Etapa 3.2.1.1.2
Aplique a propriedade distributiva.
Etapa 3.2.1.1.3
Aplique a propriedade distributiva.
Etapa 3.2.1.2
Simplifique e combine termos semelhantes.
Etapa 3.2.1.2.1
Simplifique cada termo.
Etapa 3.2.1.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.2.1.2
Multiplique por somando os expoentes.
Etapa 3.2.1.2.1.2.1
Mova .
Etapa 3.2.1.2.1.2.2
Multiplique por .
Etapa 3.2.1.2.1.3
Mova para a esquerda de .
Etapa 3.2.1.2.1.4
Multiplique por .
Etapa 3.2.1.2.1.5
Multiplique por .
Etapa 3.2.1.2.2
Subtraia de .
Etapa 3.2.1.3
Multiplique por .
Etapa 3.2.1.4
Multiplique por .
Etapa 3.2.2
Subtraia de .
Etapa 3.2.3
Subtraia de .
Etapa 3.2.4
Some e .
Etapa 3.3
Fatore usando o método AC.
Etapa 3.3.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 3.3.2
Escreva a forma fatorada usando estes números inteiros.