Cálculo Exemplos

Converta em Notação de Intervalos sin(2x)>=sin(x)
Etapa 1
Subtraia dos dois lados da desigualdade.
Etapa 2
Aplique a fórmula do arco duplo do seno.
Etapa 3
Fatore de .
Toque para ver mais passagens...
Etapa 3.1
Fatore de .
Etapa 3.2
Fatore de .
Etapa 3.3
Fatore de .
Etapa 4
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.2.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 5.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.2.2.1
O valor exato de é .
Etapa 5.2.3
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 5.2.4
Subtraia de .
Etapa 5.2.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 5.2.5.1
O período da função pode ser calculado ao usar .
Etapa 5.2.5.2
Substitua por na fórmula do período.
Etapa 5.2.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.2.5.4
Divida por .
Etapa 5.2.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 6.1
Defina como igual a .
Etapa 6.2
Resolva para .
Toque para ver mais passagens...
Etapa 6.2.1
Some aos dois lados da equação.
Etapa 6.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.2.2.1
Divida cada termo em por .
Etapa 6.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.2.2.2.1.1
Cancele o fator comum.
Etapa 6.2.2.2.1.2
Divida por .
Etapa 6.2.3
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 6.2.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.2.4.1
O valor exato de é .
Etapa 6.2.5
A função do cosseno é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 6.2.6
Simplifique .
Toque para ver mais passagens...
Etapa 6.2.6.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.6.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.6.2.1
Combine e .
Etapa 6.2.6.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.6.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.6.3.1
Multiplique por .
Etapa 6.2.6.3.2
Subtraia de .
Etapa 6.2.7
Encontre o período de .
Toque para ver mais passagens...
Etapa 6.2.7.1
O período da função pode ser calculado ao usar .
Etapa 6.2.7.2
Substitua por na fórmula do período.
Etapa 6.2.7.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2.7.4
Divida por .
Etapa 6.2.8
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
A solução final são todos os valores que tornam verdadeiro.
, para qualquer número inteiro
Etapa 8
Consolide e em .
, para qualquer número inteiro
Etapa 9
Use cada raiz para criar intervalos de teste.
Etapa 10
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 10.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.1.2
Substitua por na desigualdade original.
Etapa 10.1.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 10.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.2.2
Substitua por na desigualdade original.
Etapa 10.2.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 10.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.3.2
Substitua por na desigualdade original.
Etapa 10.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 10.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.4.2
Substitua por na desigualdade original.
Etapa 10.4.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 10.5
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.5.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.5.2
Substitua por na desigualdade original.
Etapa 10.5.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 10.6
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 10.6.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 10.6.2
Substitua por na desigualdade original.
Etapa 10.6.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 10.7
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Etapa 11
A solução consiste em todos os intervalos verdadeiros.
or or , for any integer
Etapa 12
Combine os intervalos.
, para qualquer número inteiro
Etapa 13
Converta a desigualdade em notação de intervalo.
Etapa 14