Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas f(x)=(x^3)/4-3x
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Combine e .
Etapa 1.1.2.4
Combine e .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Some aos dois lados da equação.
Etapa 2.3
Multiplique os dois lados da equação por .
Etapa 2.4
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 2.4.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.4.1.1.1
Combine.
Etapa 2.4.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.1.1.2.1
Cancele o fator comum.
Etapa 2.4.1.1.2.2
Reescreva a expressão.
Etapa 2.4.1.1.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.1.1.3.1
Cancele o fator comum.
Etapa 2.4.1.1.3.2
Divida por .
Etapa 2.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.2.1.1
Cancele o fator comum.
Etapa 2.4.2.1.2
Reescreva a expressão.
Etapa 2.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.6
Simplifique .
Toque para ver mais passagens...
Etapa 2.6.1
Reescreva como .
Etapa 2.6.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.7
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.7.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.7.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.7.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 5.2.3
Combine e .
Etapa 5.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 5.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.2.5.1
Multiplique por .
Etapa 5.2.5.2
Subtraia de .
Etapa 5.2.6
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Divida por .
Etapa 6.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 7.2.1.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 7.2.1.1.1.1
Eleve à potência de .
Etapa 7.2.1.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 7.2.1.1.2
Some e .
Etapa 7.2.1.2
Eleve à potência de .
Etapa 7.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.2.3
Combine e .
Etapa 7.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 7.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 7.2.5.1
Multiplique por .
Etapa 7.2.5.2
Subtraia de .
Etapa 7.2.6
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9