Insira um problema...
Cálculo Exemplos
Etapa 1
Diferencie os dois lados da equação.
Etapa 2
A derivada de em relação a é .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.2.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.1.3
Substitua todas as ocorrências de por .
Etapa 3.2.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.5
Some e .
Etapa 3.2.6
Multiplique por .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.2.3
Substitua todas as ocorrências de por .
Etapa 3.3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.6
Some e .
Etapa 3.3.7
Multiplique por .
Etapa 3.3.8
Multiplique por .
Etapa 3.4
Fatore de .
Etapa 3.4.1
Fatore de .
Etapa 3.4.2
Fatore de .
Etapa 3.4.3
Fatore de .
Etapa 4
Reformule a equação definindo o lado esquerdo igual ao lado direito.
Etapa 5
Substitua por .