Cálculo Exemplos

Encontre a Reta Tangente Horizontal f(x)=x/(x^2+9)
Etapa 1
Encontre a derivada.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2
Multiplique por .
Etapa 1.2.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.6.1
Some e .
Etapa 1.2.6.2
Multiplique por .
Etapa 1.3
Eleve à potência de .
Etapa 1.4
Eleve à potência de .
Etapa 1.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.6
Some e .
Etapa 1.7
Subtraia de .
Etapa 2
Defina a derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina o numerador como igual a zero.
Etapa 2.2
Resolva a equação para .
Toque para ver mais passagens...
Etapa 2.2.1
Subtraia dos dois lados da equação.
Etapa 2.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.2.2.1
Divida cada termo em por .
Etapa 2.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.2.2.2.2
Divida por .
Etapa 2.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.2.3.1
Divida por .
Etapa 2.2.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.2.4
Simplifique .
Toque para ver mais passagens...
Etapa 2.2.4.1
Reescreva como .
Etapa 2.2.4.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Resolva a função original em .
Toque para ver mais passagens...
Etapa 3.1
Substitua a variável por na expressão.
Etapa 3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 3.2.1.1
Eleve à potência de .
Etapa 3.2.1.2
Some e .
Etapa 3.2.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 3.2.2.1
Fatore de .
Etapa 3.2.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Fatore de .
Etapa 3.2.2.2.2
Cancele o fator comum.
Etapa 3.2.2.2.3
Reescreva a expressão.
Etapa 3.2.3
A resposta final é .
Etapa 4
Resolva a função original em .
Toque para ver mais passagens...
Etapa 4.1
Substitua a variável por na expressão.
Etapa 4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.2.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.2.1.1
Eleve à potência de .
Etapa 4.2.1.2
Some e .
Etapa 4.2.2
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 4.2.2.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Fatore de .
Etapa 4.2.2.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.2.2.1.2.1
Fatore de .
Etapa 4.2.2.1.2.2
Cancele o fator comum.
Etapa 4.2.2.1.2.3
Reescreva a expressão.
Etapa 4.2.2.2
Mova o número negativo para a frente da fração.
Etapa 4.2.3
A resposta final é .
Etapa 5
As retas tangentes horizontais na função são .
Etapa 6