Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2
Avalie .
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Reordene os termos.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Subtraia dos dois lados da equação.
Etapa 2.3
Divida cada termo em por e simplifique.
Etapa 2.3.1
Divida cada termo em por .
Etapa 2.3.2
Simplifique o lado esquerdo.
Etapa 2.3.2.1
Cancele o fator comum de .
Etapa 2.3.2.1.1
Cancele o fator comum.
Etapa 2.3.2.1.2
Divida por .
Etapa 2.3.3
Simplifique o lado direito.
Etapa 2.3.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.5
Simplifique .
Etapa 2.5.1
Reescreva como .
Etapa 2.5.2
Qualquer raiz de é .
Etapa 2.5.3
Multiplique por .
Etapa 2.5.4
Combine e simplifique o denominador.
Etapa 2.5.4.1
Multiplique por .
Etapa 2.5.4.2
Eleve à potência de .
Etapa 2.5.4.3
Eleve à potência de .
Etapa 2.5.4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.5.4.5
Some e .
Etapa 2.5.4.6
Reescreva como .
Etapa 2.5.4.6.1
Use para reescrever como .
Etapa 2.5.4.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.5.4.6.3
Combine e .
Etapa 2.5.4.6.4
Cancele o fator comum de .
Etapa 2.5.4.6.4.1
Cancele o fator comum.
Etapa 2.5.4.6.4.2
Reescreva a expressão.
Etapa 2.5.4.6.5
Avalie o expoente.
Etapa 2.6
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Etapa 5.2.1
Simplifique cada termo.
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.2
Some e .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Etapa 6.2.1
Simplifique cada termo.
Etapa 6.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.2
Some e .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Etapa 7.2.1
Simplifique cada termo.
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Multiplique por .
Etapa 7.2.2
Some e .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9