Cálculo Exemplos

Encontre os Pontos de Inflexão f(x)=10x^6-13x^5
Etapa 1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Multiplique por .
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2.3
Multiplique por .
Etapa 1.2.3
Avalie .
Toque para ver mais passagens...
Etapa 1.2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3.3
Multiplique por .
Etapa 1.3
A segunda derivada de com relação a é .
Etapa 2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a segunda derivada como igual a .
Etapa 2.2
Fatore de .
Toque para ver mais passagens...
Etapa 2.2.1
Fatore de .
Etapa 2.2.2
Fatore de .
Etapa 2.2.3
Fatore de .
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.4.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 2.4.2.2.1
Reescreva como .
Etapa 2.4.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais.
Etapa 2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.5.2.1
Some aos dois lados da equação.
Etapa 2.5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Divida cada termo em por .
Etapa 2.5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.2.2.1.1
Cancele o fator comum.
Etapa 2.5.2.2.2.1.2
Divida por .
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Encontre os pontos em que a segunda derivada é .
Toque para ver mais passagens...
Etapa 3.1
Substitua em para encontrar o valor de .
Toque para ver mais passagens...
Etapa 3.1.1
Substitua a variável por na expressão.
Etapa 3.1.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 3.1.2.1.2
Multiplique por .
Etapa 3.1.2.1.3
Elevar a qualquer potência positiva produz .
Etapa 3.1.2.1.4
Multiplique por .
Etapa 3.1.2.2
Some e .
Etapa 3.1.2.3
A resposta final é .
Etapa 3.2
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.3
Substitua em para encontrar o valor de .
Toque para ver mais passagens...
Etapa 3.3.1
Substitua a variável por na expressão.
Etapa 3.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Aplique a regra do produto a .
Etapa 3.3.2.1.2
Eleve à potência de .
Etapa 3.3.2.1.3
Eleve à potência de .
Etapa 3.3.2.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.2.1.4.1
Fatore de .
Etapa 3.3.2.1.4.2
Fatore de .
Etapa 3.3.2.1.4.3
Cancele o fator comum.
Etapa 3.3.2.1.4.4
Reescreva a expressão.
Etapa 3.3.2.1.5
Combine e .
Etapa 3.3.2.1.6
Multiplique por .
Etapa 3.3.2.1.7
Aplique a regra do produto a .
Etapa 3.3.2.1.8
Eleve à potência de .
Etapa 3.3.2.1.9
Eleve à potência de .
Etapa 3.3.2.1.10
Multiplique .
Toque para ver mais passagens...
Etapa 3.3.2.1.10.1
Combine e .
Etapa 3.3.2.1.10.2
Multiplique por .
Etapa 3.3.2.1.11
Mova o número negativo para a frente da fração.
Etapa 3.3.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.3.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 3.3.2.3.1
Multiplique por .
Etapa 3.3.2.3.2
Multiplique por .
Etapa 3.3.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 3.3.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.3.2.5.1
Multiplique por .
Etapa 3.3.2.5.2
Subtraia de .
Etapa 3.3.2.6
Mova o número negativo para a frente da fração.
Etapa 3.3.2.7
A resposta final é .
Etapa 3.4
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.5
Determine os pontos que poderiam ser de inflexão.
Etapa 4
Divida em intervalos em torno dos pontos que poderiam ser pontos de inflexão.
Etapa 5
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.1.3
Eleve à potência de .
Etapa 5.2.1.4
Multiplique por .
Etapa 5.2.2
Some e .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Eleve à potência de .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Eleve à potência de .
Etapa 6.2.1.4
Multiplique por .
Etapa 6.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a segunda derivada é . Por ser negativa, a segunda derivada diminui no intervalo .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Multiplique por .
Etapa 7.2.1.3
Eleve à potência de .
Etapa 7.2.1.4
Multiplique por .
Etapa 7.2.2
Subtraia de .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Etapa 9