Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas y=x^3-8x^2-12x+6
Etapa 1
Escreva como uma função.
Etapa 2
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2
Avalie .
Toque para ver mais passagens...
Etapa 2.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.3
Multiplique por .
Etapa 2.1.3
Avalie .
Toque para ver mais passagens...
Etapa 2.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.3.3
Multiplique por .
Etapa 2.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.4.2
Some e .
Etapa 2.2
A primeira derivada de com relação a é .
Etapa 3
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 3.1
Defina a primeira derivada como igual a .
Etapa 3.2
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 3.2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 3.2.1.1
Fatore de .
Etapa 3.2.1.2
Reescreva como mais
Etapa 3.2.1.3
Aplique a propriedade distributiva.
Etapa 3.2.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 3.2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 3.2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 3.2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 3.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.4.1
Defina como igual a .
Etapa 3.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 3.4.2.1
Subtraia dos dois lados da equação.
Etapa 3.4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.4.2.2.1
Divida cada termo em por .
Etapa 3.4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.4.2.2.2.1.1
Cancele o fator comum.
Etapa 3.4.2.2.2.1.2
Divida por .
Etapa 3.4.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.4.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 3.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.5.1
Defina como igual a .
Etapa 3.5.2
Some aos dois lados da equação.
Etapa 3.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 4
Os valores, que tornam a derivada igual a , são .
Etapa 5
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Eleve à potência de .
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.2
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 6.2.2.1
Some e .
Etapa 6.2.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Multiplique por .
Etapa 7.2.1.3
Multiplique por .
Etapa 7.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 7.2.2.1
Subtraia de .
Etapa 7.2.2.2
Subtraia de .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 8.1
Substitua a variável por na expressão.
Etapa 8.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 8.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 8.2.1.1
Eleve à potência de .
Etapa 8.2.1.2
Multiplique por .
Etapa 8.2.1.3
Multiplique por .
Etapa 8.2.2
Simplifique subtraindo os números.
Toque para ver mais passagens...
Etapa 8.2.2.1
Subtraia de .
Etapa 8.2.2.2
Subtraia de .
Etapa 8.2.3
A resposta final é .
Etapa 8.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 9
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 10