Insira um problema...
Cálculo Exemplos
Etapa 1
Deixe , em que . Depois, . Como , é positivo.
Etapa 2
Etapa 2.1
Simplifique .
Etapa 2.1.1
Simplifique cada termo.
Etapa 2.1.1.1
Combine e .
Etapa 2.1.1.2
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 2.1.1.2.1
Aplique a regra do produto a .
Etapa 2.1.1.2.2
Aplique a regra do produto a .
Etapa 2.1.1.3
Eleve à potência de .
Etapa 2.1.1.4
Eleve à potência de .
Etapa 2.1.1.5
Cancele o fator comum de .
Etapa 2.1.1.5.1
Fatore de .
Etapa 2.1.1.5.2
Cancele o fator comum.
Etapa 2.1.1.5.3
Reescreva a expressão.
Etapa 2.1.1.6
Multiplique por .
Etapa 2.1.2
Fatore de .
Etapa 2.1.3
Fatore de .
Etapa 2.1.4
Fatore de .
Etapa 2.1.5
Aplique a identidade trigonométrica fundamental.
Etapa 2.1.6
Reescreva como .
Etapa 2.1.7
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.2
Simplifique.
Etapa 2.2.1
Combine e .
Etapa 2.2.2
Multiplique por .
Etapa 2.2.3
Combine e .
Etapa 2.2.4
Eleve à potência de .
Etapa 2.2.5
Eleve à potência de .
Etapa 2.2.6
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.2.7
Some e .
Etapa 3
Como é constante com relação a , mova para fora da integral.
Etapa 4
Use a fórmula do arco metade para reescrever como .
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Etapa 6.1
Multiplique por .
Etapa 6.2
Multiplique por .
Etapa 6.3
Cancele o fator comum de e .
Etapa 6.3.1
Fatore de .
Etapa 6.3.2
Cancele os fatores comuns.
Etapa 6.3.2.1
Fatore de .
Etapa 6.3.2.2
Cancele o fator comum.
Etapa 6.3.2.3
Reescreva a expressão.
Etapa 7
Divida a integral única em várias integrais.
Etapa 8
Aplique a regra da constante.
Etapa 9
Etapa 9.1
Deixe . Encontre .
Etapa 9.1.1
Diferencie .
Etapa 9.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 9.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 9.1.4
Multiplique por .
Etapa 9.2
Reescreva o problema usando e .
Etapa 10
Combine e .
Etapa 11
Como é constante com relação a , mova para fora da integral.
Etapa 12
A integral de com relação a é .
Etapa 13
Simplifique.
Etapa 14
Etapa 14.1
Substitua todas as ocorrências de por .
Etapa 14.2
Substitua todas as ocorrências de por .
Etapa 14.3
Substitua todas as ocorrências de por .
Etapa 15
Etapa 15.1
Combine e .
Etapa 15.2
Aplique a propriedade distributiva.
Etapa 15.3
Combine e .
Etapa 15.4
Cancele o fator comum de .
Etapa 15.4.1
Fatore de .
Etapa 15.4.2
Cancele o fator comum.
Etapa 15.4.3
Reescreva a expressão.
Etapa 15.5
Combine e .
Etapa 16
Reordene os termos.