Cálculo Exemplos

Ermittle die 2nd-Ableitung y=2x-3x^(2/3)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4
Combine e .
Etapa 1.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.6
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.6.1
Multiplique por .
Etapa 1.3.6.2
Subtraia de .
Etapa 1.3.7
Mova o número negativo para a frente da fração.
Etapa 1.3.8
Combine e .
Etapa 1.3.9
Combine e .
Etapa 1.3.10
Multiplique por .
Etapa 1.3.11
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.3.12
Fatore de .
Etapa 1.3.13
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.3.13.1
Fatore de .
Etapa 1.3.13.2
Cancele o fator comum.
Etapa 1.3.13.3
Reescreva a expressão.
Etapa 1.3.14
Mova o número negativo para a frente da fração.
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Reescreva como .
Etapa 2.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3.3
Substitua todas as ocorrências de por .
Etapa 2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.5.2
Combine e .
Etapa 2.2.5.3
Mova o número negativo para a frente da fração.
Etapa 2.2.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.2.7
Combine e .
Etapa 2.2.8
Combine os numeradores em relação ao denominador comum.
Etapa 2.2.9
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.2.9.1
Multiplique por .
Etapa 2.2.9.2
Subtraia de .
Etapa 2.2.10
Mova o número negativo para a frente da fração.
Etapa 2.2.11
Combine e .
Etapa 2.2.12
Combine e .
Etapa 2.2.13
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.2.13.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.2.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 2.2.13.3
Subtraia de .
Etapa 2.2.13.4
Mova o número negativo para a frente da fração.
Etapa 2.2.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.2.15
Multiplique por .
Etapa 2.2.16
Combine e .
Etapa 2.3
Some e .
Etapa 3
Encontre a terceira derivada.
Toque para ver mais passagens...
Etapa 3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 3.2.1
Reescreva como .
Etapa 3.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 3.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.2.2.2
Multiplique .
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Combine e .
Etapa 3.2.2.2.2
Multiplique por .
Etapa 3.2.2.3
Mova o número negativo para a frente da fração.
Etapa 3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.5
Combine e .
Etapa 3.6
Combine os numeradores em relação ao denominador comum.
Etapa 3.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.7.1
Multiplique por .
Etapa 3.7.2
Subtraia de .
Etapa 3.8
Mova o número negativo para a frente da fração.
Etapa 3.9
Combine e .
Etapa 3.10
Multiplique por .
Etapa 3.11
Multiplique.
Toque para ver mais passagens...
Etapa 3.11.1
Multiplique por .
Etapa 3.11.2
Multiplique por .
Etapa 3.11.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 4
Encontre a quarta derivada.
Toque para ver mais passagens...
Etapa 4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 4.2.1
Reescreva como .
Etapa 4.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 4.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.2.2
Multiplique .
Toque para ver mais passagens...
Etapa 4.2.2.2.1
Combine e .
Etapa 4.2.2.2.2
Multiplique por .
Etapa 4.2.2.3
Mova o número negativo para a frente da fração.
Etapa 4.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.5
Combine e .
Etapa 4.6
Combine os numeradores em relação ao denominador comum.
Etapa 4.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.7.1
Multiplique por .
Etapa 4.7.2
Subtraia de .
Etapa 4.8
Mova o número negativo para a frente da fração.
Etapa 4.9
Combine e .
Etapa 4.10
Multiplique.
Toque para ver mais passagens...
Etapa 4.10.1
Multiplique por .
Etapa 4.10.2
Multiplique por .
Etapa 4.11
Multiplique por .
Etapa 4.12
Multiplique.
Toque para ver mais passagens...
Etapa 4.12.1
Multiplique por .
Etapa 4.12.2
Multiplique por .
Etapa 4.12.3
Mova para o denominador usando a regra do expoente negativo .