Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.4
Multiplique por .
Etapa 1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.6
Simplifique a expressão.
Etapa 1.2.6.1
Some e .
Etapa 1.2.6.2
Multiplique por .
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Diferencie.
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.5
Multiplique por .
Etapa 2.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.7
Simplifique a expressão.
Etapa 2.3.7.1
Some e .
Etapa 2.3.7.2
Multiplique por .
Etapa 3
Etapa 3.1
Reescreva como .
Etapa 3.2
Expanda usando o método FOIL.
Etapa 3.2.1
Aplique a propriedade distributiva.
Etapa 3.2.2
Aplique a propriedade distributiva.
Etapa 3.2.3
Aplique a propriedade distributiva.
Etapa 3.3
Simplifique e combine termos semelhantes.
Etapa 3.3.1
Simplifique cada termo.
Etapa 3.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.1.2
Multiplique por somando os expoentes.
Etapa 3.3.1.2.1
Mova .
Etapa 3.3.1.2.2
Multiplique por .
Etapa 3.3.1.3
Multiplique por .
Etapa 3.3.1.4
Multiplique por .
Etapa 3.3.1.5
Multiplique por .
Etapa 3.3.1.6
Multiplique por .
Etapa 3.3.2
Some e .
Etapa 3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.8
Multiplique por .
Etapa 3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.10
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.11
Multiplique por .
Etapa 3.12
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.13
Some e .
Etapa 3.14
Simplifique.
Etapa 3.14.1
Aplique a propriedade distributiva.
Etapa 3.14.2
Combine os termos.
Etapa 3.14.2.1
Multiplique por .
Etapa 3.14.2.2
Multiplique por .
Etapa 4
Etapa 4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.2
Avalie .
Etapa 4.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3
Multiplique por .
Etapa 4.3
Diferencie usando a regra da constante.
Etapa 4.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.2
Some e .
Etapa 5
A quarta derivada de com relação a é .