Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.3
Combine e .
Etapa 1.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.5
Simplifique o numerador.
Etapa 1.2.5.1
Multiplique por .
Etapa 1.2.5.2
Subtraia de .
Etapa 1.3
Avalie .
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.4
Combine e .
Etapa 1.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.6
Simplifique o numerador.
Etapa 1.3.6.1
Multiplique por .
Etapa 1.3.6.2
Subtraia de .
Etapa 1.3.7
Combine e .
Etapa 1.3.8
Combine e .
Etapa 1.3.9
Multiplique por .
Etapa 1.3.10
Mova o número negativo para a frente da fração.
Etapa 1.4
Combine e .
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.2.4
Combine e .
Etapa 2.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.2.6
Simplifique o numerador.
Etapa 2.2.6.1
Multiplique por .
Etapa 2.2.6.2
Subtraia de .
Etapa 2.2.7
Combine e .
Etapa 2.2.8
Multiplique por .
Etapa 2.2.9
Multiplique por .
Etapa 2.2.10
Multiplique por .
Etapa 2.3
Avalie .
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.3.4
Combine e .
Etapa 2.3.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.6
Simplifique o numerador.
Etapa 2.3.6.1
Multiplique por .
Etapa 2.3.6.2
Subtraia de .
Etapa 2.3.7
Mova o número negativo para a frente da fração.
Etapa 2.3.8
Combine e .
Etapa 2.3.9
Multiplique por .
Etapa 2.3.10
Multiplique por .
Etapa 2.3.11
Multiplique por .
Etapa 2.3.12
Mova para o denominador usando a regra do expoente negativo .
Etapa 3
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.2.4
Combine e .
Etapa 3.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.6
Simplifique o numerador.
Etapa 3.2.6.1
Multiplique por .
Etapa 3.2.6.2
Subtraia de .
Etapa 3.2.7
Mova o número negativo para a frente da fração.
Etapa 3.2.8
Combine e .
Etapa 3.2.9
Multiplique por .
Etapa 3.2.10
Multiplique por .
Etapa 3.2.11
Multiplique por .
Etapa 3.2.12
Mova para o denominador usando a regra do expoente negativo .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Reescreva como .
Etapa 3.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3.3
Substitua todas as ocorrências de por .
Etapa 3.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.5
Multiplique os expoentes em .
Etapa 3.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.5.2
Combine e .
Etapa 3.3.5.3
Mova o número negativo para a frente da fração.
Etapa 3.3.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.3.7
Combine e .
Etapa 3.3.8
Combine os numeradores em relação ao denominador comum.
Etapa 3.3.9
Simplifique o numerador.
Etapa 3.3.9.1
Multiplique por .
Etapa 3.3.9.2
Subtraia de .
Etapa 3.3.10
Mova o número negativo para a frente da fração.
Etapa 3.3.11
Combine e .
Etapa 3.3.12
Combine e .
Etapa 3.3.13
Multiplique por somando os expoentes.
Etapa 3.3.13.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.3.13.3
Subtraia de .
Etapa 3.3.13.4
Mova o número negativo para a frente da fração.
Etapa 3.3.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 3.3.15
Multiplique por .
Etapa 3.3.16
Multiplique por .
Etapa 3.3.17
Multiplique por .
Etapa 3.3.18
Multiplique por .
Etapa 4
Etapa 4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.2
Avalie .
Etapa 4.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2.2
Reescreva como .
Etapa 4.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3.3
Substitua todas as ocorrências de por .
Etapa 4.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.5
Multiplique os expoentes em .
Etapa 4.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.5.2
Combine e .
Etapa 4.2.5.3
Mova o número negativo para a frente da fração.
Etapa 4.2.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.2.7
Combine e .
Etapa 4.2.8
Combine os numeradores em relação ao denominador comum.
Etapa 4.2.9
Simplifique o numerador.
Etapa 4.2.9.1
Multiplique por .
Etapa 4.2.9.2
Subtraia de .
Etapa 4.2.10
Mova o número negativo para a frente da fração.
Etapa 4.2.11
Combine e .
Etapa 4.2.12
Combine e .
Etapa 4.2.13
Multiplique por somando os expoentes.
Etapa 4.2.13.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.2.13.2
Combine os numeradores em relação ao denominador comum.
Etapa 4.2.13.3
Subtraia de .
Etapa 4.2.13.4
Mova o número negativo para a frente da fração.
Etapa 4.2.14
Mova para o denominador usando a regra do expoente negativo .
Etapa 4.2.15
Multiplique por .
Etapa 4.2.16
Multiplique por .
Etapa 4.3
Avalie .
Etapa 4.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.2
Reescreva como .
Etapa 4.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.3.3
Substitua todas as ocorrências de por .
Etapa 4.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.5
Multiplique os expoentes em .
Etapa 4.3.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.3.5.2
Multiplique .
Etapa 4.3.5.2.1
Combine e .
Etapa 4.3.5.2.2
Multiplique por .
Etapa 4.3.5.3
Mova o número negativo para a frente da fração.
Etapa 4.3.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.3.7
Combine e .
Etapa 4.3.8
Combine os numeradores em relação ao denominador comum.
Etapa 4.3.9
Simplifique o numerador.
Etapa 4.3.9.1
Multiplique por .
Etapa 4.3.9.2
Subtraia de .
Etapa 4.3.10
Combine e .
Etapa 4.3.11
Combine e .
Etapa 4.3.12
Multiplique por somando os expoentes.
Etapa 4.3.12.1
Mova .
Etapa 4.3.12.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.3.12.3
Combine os numeradores em relação ao denominador comum.
Etapa 4.3.12.4
Some e .
Etapa 4.3.12.5
Mova o número negativo para a frente da fração.
Etapa 4.3.13
Mova para o denominador usando a regra do expoente negativo .
Etapa 4.3.14
Multiplique por .
Etapa 4.3.15
Multiplique por .
Etapa 4.3.16
Multiplique por .