Cálculo Exemplos

Encontre a Reta Tangente Horizontal y=x^3+6x
Etapa 1
Defina como uma função de .
Etapa 2
Encontre a derivada.
Toque para ver mais passagens...
Etapa 2.1
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 3
Defina a derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 3.1
Subtraia dos dois lados da equação.
Etapa 3.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.1
Divida cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.1.2
Divida por .
Etapa 3.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.3.1
Divida por .
Etapa 3.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.4
Simplifique .
Toque para ver mais passagens...
Etapa 3.4.1
Reescreva como .
Etapa 3.4.2
Reescreva como .
Etapa 3.4.3
Reescreva como .
Etapa 3.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Não é possível encontrar uma reta tangente em um ponto imaginário. O ponto em não existe no sistema de coordenadas real.
Não é possível encontrar uma tangente da raiz
Etapa 5
There are no horizontal tangent lines on the function .
No horizontal tangent lines
Etapa 6