Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+ | + | + | + |
Etapa 1.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | + | + | + |
Etapa 1.3
Multiplique o novo termo do quociente pelo divisor.
+ | + | + | + | ||||||||
+ | + | + |
Etapa 1.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | + | + | + | ||||||||
- | - | - |
Etapa 1.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | + | + | + | ||||||||
- | - | - | |||||||||
- |
Etapa 1.6
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 2
Divida a integral única em várias integrais.
Etapa 3
Aplique a regra da constante.
Etapa 4
Como é constante com relação a , mova para fora da integral.
Etapa 5
Como é constante com relação a , mova para fora da integral.
Etapa 6
Etapa 6.1
Multiplique por .
Etapa 6.2
Reordene e .
Etapa 7
Reescreva como .
Etapa 8
A integral de com relação a é .
Etapa 9
Etapa 9.1
Combine e .
Etapa 9.2
Simplifique.
Etapa 9.3
Simplifique.
Etapa 9.3.1
Combine e .
Etapa 9.3.2
Mova o número negativo para a frente da fração.
Etapa 10
Reordene os termos.