Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie os limites substituindo por todas as ocorrências de .
Etapa 1.1.2.1
Avalie o limite de substituindo por .
Etapa 1.1.2.2
O valor exato de é .
Etapa 1.1.3
Avalie o limite de substituindo por .
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
A derivada de em relação a é .
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Multiplique por .
Etapa 2
Etapa 2.1
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.3
Mova o limite para baixo do sinal do radical.
Etapa 2.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.6
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 3
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Simplifique o denominador.
Etapa 4.1.1
Elevar a qualquer potência positiva produz .
Etapa 4.1.2
Multiplique por .
Etapa 4.1.3
Some e .
Etapa 4.1.4
Qualquer raiz de é .
Etapa 4.2
Divida por .